基于矩阵相似度的空时二维干扰检测方法
本文选题:空时自适应处理 切入点:干扰目标 出处:《系统工程与电子技术》2017年02期
【摘要】:针对干扰目标污染训练样本引起功率非均匀,造成空时自适应处理(space-time adaptive processing,STAP)目标检测性能下降这一问题,提出一种基于矩阵相似度的STAP非均匀样本选取方法。该方法首先从受污染样本与干净样本的差异性度量角度入手,采用均值Hausdorff距离度量样本矩阵相似性,然后结合凸优化包计算不同样本的相似度,最后根据相似度的不同,实现对受污染样本的剔除。仿真结果表明,同广义内积法(generalized inner product,GIP)相比,采用均值Hausdorff矩阵相似度的挑选方法对于受小干扰强度目标污染的样本检测更加有效,避免了弱干扰目标对于协方差矩阵估计的影响,从而改善了STAP在功率非均匀环境下的目标检测性能。
[Abstract]:Aiming at the problem that the interference target pollution training samples cause the non-uniform power and the space-time adaptive processing space-time adaptive processing (space-time adaptive processing) target detection performance is degraded, a STAP heterogeneous sample selection method based on matrix similarity is proposed.The method first measures the difference between contaminated samples and clean samples, and measures the similarity of sample matrix with mean Hausdorff distance, then calculates the similarity of different samples with convex optimization packet, and finally according to the difference of similarity.The removal of contaminated samples is realized.The simulation results show that compared with generalized inner product method (GIP), the average Hausdorff matrix similarity selection method is more effective for the detection of samples contaminated by small interference intensity targets, and avoids the influence of weak interference targets on covariance matrix estimation.Thus, the performance of STAP target detection in non-uniform power environment is improved.
【作者单位】: 空军工程大学防空反导学院;中国人民解放军94175部队;
【分类号】:TN957.51
【相似文献】
相关期刊论文 前10条
1 郑炜冬;;试卷相似度自动评估技术的研究[J];智能计算机与应用;2011年06期
2 赵涛;肖建;;二型模糊相似度及其应用[J];计算机工程与应用;2013年08期
3 徐志明;李栋;刘挺;李生;王刚;袁树仑;;微博用户的相似性度量及其应用[J];计算机学报;2014年01期
4 李桂林,陈晓云;关于聚类分析中相似度的讨论[J];计算机工程与应用;2004年31期
5 秦玉平;杨兴凯;;基于案例推理的区间属性相似度研究[J];辽宁师范大学学报(自然科学版);2006年04期
6 蒋鹏;;基于本体的应急案例相似度算法研究[J];南昌高专学报;2009年03期
7 何亚;;词语相似度算法的分析与改进[J];硅谷;2011年24期
8 仇丽青;陈卓艳;;基于共同邻居相似度的社区发现算法[J];信息系统工程;2014年05期
9 焦鹏;唐见兵;查亚兵;;仿真可信度评估中相似度方法的改进及其应用[J];系统仿真学报;2007年12期
10 姜毅;乐庆玲;;一种基于兴趣相似度的学习社区算法[J];电脑知识与技术(学术交流);2007年16期
相关会议论文 前10条
1 刘海波;郑德权;赵铁军;;基于相似度线性加权方法的检索结果聚类研究[A];中国计算语言学研究前沿进展(2009-2011)[C];2011年
2 陆劲挺;路强;刘晓平;;对比相似度计算方法及其在功能树扩展中的应用[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年
3 董刊生;方金云;;基于向量距离的词序相似度算法[A];第四届全国信息检索与内容安全学术会议论文集(上)[C];2008年
4 刘晓平;陆劲挺;;任意功能树的物元相似度求解方法[A];全国第21届计算机技术与应用学术会议(CACIS·2010)暨全国第2届安全关键技术与应用学术会议论文集[C];2010年
5 王茜;张卫星;;基于分类树相似度加权的协同过滤算法[A];2008年计算机应用技术交流会论文集[C];2008年
6 洪文学;王金甲;常凤香;宋佳霖;刘文远;王立强;;基于图形特征增强的相似度分类器的研究[A];中国生物医学工程进展——2007中国生物医学工程联合学术年会论文集(上册)[C];2007年
7 雷庆;吴扬扬;;一种基于语义信息计算XML文档相似度的新方法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
8 叶正;林鸿飞;杨志豪;;基于问句相似度的中文FAQ问答系统研究[A];第三届学生计算语言学研讨会论文集[C];2006年
9 罗辛;欧阳元新;熊璋;袁满;;通过相似度支持度优化基于K近邻的协同过滤算法[A];NDBC2010第27届中国数据库学术会议论文集A辑一[C];2010年
10 王健;刘衍珩;焦玉;;VANETs信任传播建模[A];中国通信学会通信软件技术委员会2009年学术会议论文集[C];2009年
相关重要报纸文章 前1条
1 王伽 卫江;出入境证件照片应及时更换[N];中国国门时报;2008年
相关博士学位论文 前10条
1 操震洲;矢量数据动态多尺度网络传输研究[D];南京大学;2015年
2 程亮;基于本体的疾病数据整合与挖掘方法研究[D];哈尔滨工业大学;2014年
3 刘振宇;基于区域相似度和特征降维的极化SAR影像分类[D];武汉大学;2013年
4 曹,
本文编号:1727325
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1727325.html