水下可见光高速通信系统的设计与实现
本文选题:脉冲位置调制 + FPGA ; 参考:《青岛科技大学》2017年硕士论文
【摘要】:随着人们对海洋资源的深入开发,人类与海洋的通信日益频繁,迫切需要高速水下无线通信技术的支持。目前水下声通信虽然是水下无线通信的主要方式,但是由于水声带宽的限制,水声通信无法实现传输速率的有效提升。另外,由于水下电磁波的严重衰减,水下电磁波通信也无法实现高速水下通信。450~550nm波段的蓝绿光在水中的衰减比其他光波段小很多,这为水下光通信的发展奠定了基础。而且水下光通信系统具有传输带宽大、数据传输效率高和通信设备体积小等优点,可解决水下高速无线传输难题。然而由于水下信道传输环境复杂,水下光通信发展缓慢,直至近年来更高编码方式、大功率发光光源和高处理速率芯片的出现,使得水下光通信成为研究热点。本文采用蓝光光源,设计并实现了一种基于脉冲位置调制(Pulse Position Modulation,简称PPM)的水下高速光通信系统,该系统采用通信接口接收上位机软件发送的数据信息,下位机采用现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)开发平台进行PPM的调制和解调处理。论文主要完成以下方面的工作:首先,系统硬件的设计:主要完成了发送端光源驱动电路、光接收器电路、外部信号处理电路等硬件电路的设计,包括对应器件的功能分析和选择。并通过信号检测完成了硬件电路设计的可行性和效率检测。其次,基于QuartusII11.0开发软件采用硬件描述语言进行软件部分的设计。主要完成了数据信号的接收,以及对数据进行PPM调制和解调处理的编码设计。通过对PPM调制和解调中各功能子模块的分开设计,实现了数据的综合处理功能,并通过波形仿真软件进行模拟仿真。同时,各功能子模块根据波形仿真结果验证各模块设计的可行性。最后,对本文设计的水下光通信系统进行实验结果的分析,进一步验证了设计的可行性。实验表明,本文基于PPM调制所设计的水下可见光高速通信系统能够在最低误码率要求的范围内实现Mbps的高速数据传输速率,可准确、高效的完成水下信道的无线数据通信。
[Abstract]:With the development of ocean resources, the communication between human beings and the ocean is becoming more and more frequent, and the support of high-speed underwater wireless communication technology is urgently needed. At present underwater acoustic communication is the main way of underwater wireless communication, but due to the limitation of underwater acoustic bandwidth, underwater acoustic communication can not effectively improve the transmission rate. In addition, due to the serious attenuation of underwater electromagnetic wave, underwater electromagnetic wave communication can not achieve high-speed underwater communication. 450 nm blue green light attenuation in water is much smaller than other optical wave bands, which lays the foundation for the development of underwater optical communication. The underwater optical communication system has the advantages of large transmission bandwidth, high data transmission efficiency and small volume of communication equipment, which can solve the problem of underwater high-speed wireless transmission. However, due to the complexity of underwater channel transmission environment, the development of underwater optical communication is slow, until the emergence of high power light source and high processing rate chip in recent years, underwater optical communication has become a research hotspot. In this paper, a kind of underwater high-speed optical communication system based on pulse Position modulation (PPM) is designed and implemented by using blue light source. The communication interface is used to receive the data sent by the host computer software. The field programmable gate array Field-Programmable Gate Array (FPGA) is used to modulate and demodulate the PPM. The main work of this paper is as follows: firstly, the hardware design of the system: the design of the transmitter light source driving circuit, the optical receiver circuit, the external signal processing circuit and other hardware circuits, etc. Including the functional analysis and selection of the corresponding device. The feasibility and efficiency of hardware circuit design are tested by signal detection. Secondly, the hardware description language is used to design the software based on QuartusII11.0. It mainly completes the data signal receiving and the coding design of PPM modulation and demodulation. Through the separate design of each function sub-module in PPM modulation and demodulation, the comprehensive processing function of data is realized, and the simulation is carried out by waveform simulation software. At the same time, the functional sub-modules verify the feasibility of each module design according to the waveform simulation results. Finally, the experimental results of the underwater optical communication system designed in this paper are analyzed, and the feasibility of the design is further verified. The experiments show that the underwater visible light high-speed communication system designed based on PPM modulation can realize the high speed data transmission rate of Mbps within the minimum bit error rate, and can complete the wireless data communication of underwater channel accurately and efficiently.
【学位授予单位】:青岛科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN929.3
【相似文献】
相关期刊论文 前10条
1 迎九;连接器正在适应高速通信[J];电子产品世界;2004年10期
2 ;超长距离高速通信技术[J];湖北邮电经济技术参考;1994年04期
3 吴康迪;日计划实现超高速通信[J];有线电视技术;2002年20期
4 邓勇;凌小峰;宫新保;;一种嵌入式高速通信系统的方案设计与实现[J];信息技术;2011年03期
5 周卫东,周耕书;现代高速通信网络的性能及其应用现状分析[J];海军工程学院学报;1998年03期
6 夏娟,殷惠龙,胡振德;“三网合一”构筑公用高速通信网平台[J];苏州丝绸工学院学报;1999年01期
7 郑冬冬;;日本首次完成人体高速通信实验[J];半导体信息;2004年01期
8 章珍珍;马连川;;一种点对点高速通信控制器的设计与实现[J];电子设计工程;2012年18期
9 张肇富;随订立等可取的音乐光盘[J];乐器;1998年04期
10 张亿忠;;C8051F020在高速通信中的应用[J];湘潭师范学院学报(自然科学版);2007年02期
相关会议论文 前1条
1 孟军;;论经济信息资源的开发利用[A];新世纪 新思考[C];1999年
相关重要报纸文章 前1条
1 ;越南和北美间实现高速通信[N];人民邮电;2002年
相关硕士学位论文 前3条
1 杨杰;水下可见光高速通信系统的设计与实现[D];青岛科技大学;2017年
2 唐续;面向分布式并行服务器的高速通信研究与实现[D];电子科技大学;2004年
3 那凯鹏;多参数数字化阵列传感器高速通信适配器设计[D];中北大学;2009年
,本文编号:1897679
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1897679.html