当前位置:主页 > 科技论文 > 信息工程论文 >

UHF频段窄带微波室内定位技术研究

发布时间:2018-05-17 00:34

  本文选题:室内定位 + m序列 ; 参考:《广州大学》2017年硕士论文


【摘要】:过去的几年里,在许多公共服务中,室内高精度定位的需求迅速增加,特别是基于微波传输的厘米级精度的定位技术的需求越来越大。然而,目前的WLAN以及ZigBee定位技术只能提供米级的定位精度;而超宽带技术虽然可以提供厘米级的精度,但由于使用超高频60 GHz的通信技术,使得其成本非常高,无法广泛应用。定位技术通常通过计算发射机和基站的距离,然后根据三角测量算法来确定发射机的位置。而在微波传输中,可根据传输时间来得到距离,因而其定位的精度又取决于时间的测量。扩频技术由于具有良好的自相关特性以及抗干扰能力强等特点,能够很好的获取到精准时间测量,因此可以用扩频技术进行高精度的定位,且时间检测的精度与码元宽度有关,码元宽度越窄,精度越高。但码元宽度越窄也会导致采样率以及硬件成本的提高,并加大了系统的实现难度。由于相位检测比时间检测更容易实现,室内定位系统可以通过利用扩频信号良好的自相关特性来测量相干相位,在得到较为准确的到达时间的同时也降低了采样率以及硬件成本。因此论文提出基于1 GHz频率下的扩频信号小波自相关相位测量的室内定位算法,实现低成本高精度的定位目的。然而,通过实验发现,噪声对精度有很大的影响,因此有必要对接收到的信号进行去噪后再进行自相关运算。而目前的时域或频域滤波方法只能对高频带噪声进行降噪,这使得测量精度较低。因此,论文提出了一种基于矩形窗分段阈值的低频带降噪算法。该方法基于时频小波域进行阈值降噪,利用本地扩频信号同一子带的方差作为参考,根据方差之间的大小关系对带噪声的扩频信号进行小波分段阈值降噪,并在降噪后进行小波低频带自相关。仿真结果表明,与其他滤波方法相比,本文提出的小波自相关和低频带分段阈值去噪算法可以消除噪声的影响,并提高定位精度。
[Abstract]:In the past few years, the demand for indoor high-precision positioning has increased rapidly in many public services, especially the demand for centimeter-precision positioning technology based on microwave transmission. However, the current WLAN and ZigBee positioning technology can only provide meter level positioning accuracy, while UWB technology can provide centimeter level accuracy, but because of the use of UHF 60 GHz communication technology, its cost is very high, so it can not be widely used. The location technique usually calculates the distance between the transmitter and the base station, and then determines the location of the transmitter according to the triangulation algorithm. In microwave transmission, the distance can be obtained according to the transmission time, so the positioning accuracy depends on the measurement of time. Because of its good autocorrelation characteristics and strong anti-jamming ability, spread spectrum technology can obtain accurate time measurement, so it can be used to locate accurately, and the accuracy of time detection is related to symbol width. The narrower the symbol width, the higher the precision. However, the narrower the symbol width, the higher the sampling rate and hardware cost, and the more difficult the system is to realize. Because phase detection is easier than time detection, the indoor positioning system can measure coherent phase by using the good autocorrelation characteristic of spread spectrum signal. At the same time, the sampling rate and hardware cost are reduced. Therefore, an indoor localization algorithm based on wavelet autocorrelation phase measurement of spread spectrum signals at 1 GHz frequency is proposed to achieve the purpose of low cost and high precision. However, it is found that the noise has a great influence on the precision, so it is necessary to Denoise the received signal and then carry out autocorrelation operation. However, the current filtering methods in time domain or frequency domain can only reduce the noise in high frequency band, which makes the measurement accuracy low. Therefore, a low frequency band denoising algorithm based on the segmented threshold of rectangular window is proposed in this paper. This method is based on time-frequency wavelet domain for threshold denoising, using the variance of the same sub-band of local spread spectrum signal as a reference, according to the relationship between the variance of the spread spectrum signal with noise wavelet segmentation threshold noise reduction. After noise reduction, wavelet low frequency band autocorrelation is carried out. The simulation results show that compared with other filtering methods, the proposed wavelet autocorrelation and low-frequency segmented threshold denoising algorithm can eliminate the noise and improve the positioning accuracy.
【学位授予单位】:广州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN914.42

【参考文献】

相关期刊论文 前10条

1 邓照群;李兴广;陈磊;;基于RFID的室内定位算法VIRE的改进[J];科技创新导报;2016年18期

2 蔡文郁;周展业;张栋;;基于BL4.0 iBeacon技术的室内定位算法研究[J];杭州电子科技大学学报(自然科学版);2016年05期

3 宋镖;程磊;周明达;吴怀宇;陈洋;;基于惯导辅助地磁的手机室内定位系统设计[J];传感技术学报;2015年08期

4 石志京;徐铁峰;刘太君;刘明伟;;基于iBeacon基站的室内定位技术研究[J];移动通信;2015年07期

5 吴炬卓;牛海清;;基于提升小波分解的小波熵在抑制局部放电白噪声干扰中的应用[J];高压电器;2014年12期

6 吴光文;王昌明;包建东;陈勇;胡扬坡;;基于自适应阈值函数的小波阈值去噪方法[J];电子与信息学报;2014年06期

7 孙善武;王楠;陈坚;;一种改进的基于信号强度的WLAN定位方法[J];计算机科学;2014年06期

8 徐彤阳;;基于减法聚类的TOA/AOA定位方法研究[J];电子测量技术;2013年10期

9 张凡;陈典铖;杨杰;;室内定位技术及系统比较研究[J];广东通信技术;2012年11期

10 施长宝;李瑾;;基于超宽带技术的室内无线定位的研究[J];科技信息;2012年07期

相关硕士学位论文 前5条

1 曹海涛;基于时频域分析的音频信号滤波与识别技术研究[D];广州大学;2016年

2 王益健;蓝牙室内定位关键技术的研究与实现[D];东南大学;2015年

3 李婧;RFID室内三维定位算法研究[D];电子科技大学;2013年

4 迟婷婷;连续波激光雷达测距新方法的研究[D];天津理工大学;2013年

5 马灵芝;基于TDOA无线传感定位算法的研究及应用[D];山东大学;2012年



本文编号:1899120

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/1899120.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户64137***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com