基于异常检测与双层筛选机制的SAR图像舰船检测方法
发布时间:2019-04-09 07:27
【摘要】:针对现有合成孔径雷达(SAR)图像舰船目标智能检测算法中筛选误差较大的问题,提出一种新的SAR图像舰船目标检测方法。该方法将高光谱图像异常检测理论引入到SAR图像舰船目标检测处理中。通过图像转换将SAR图像转换成高光谱类型图像,采用异常检测算法实现舰船目标的检测预处理,得到感兴趣区域二值图。运用双层筛选机制,实现背景杂波的准确建模和舰船目标的快速检测。实验结果表明,该算法能够降低筛选误差,有效地消除虚假目标和旁瓣干扰,具有更好的结构保真度。
[Abstract]:A new method of ship target detection based on synthetic Aperture Radar (SAR) image is proposed to solve the problem of large filtering error in the existing algorithms of ship target intelligent detection in synthetic aperture radar (SAR) images. In this method, the theory of hyperspectral anomaly detection is introduced into the ship target detection of SAR image. The SAR image is converted into hyperspectral image by image conversion, and the detection preprocessing of ship target is realized by using anomaly detection algorithm, and the binary map of the region of interest is obtained. The background clutter modeling and the fast detection of ship targets are realized by using the double-layer filtering mechanism. The experimental results show that the proposed algorithm can reduce the filter error, effectively eliminate false targets and sidelobe interference, and has better structure fidelity.
【作者单位】: 国防科学技术大学电子科学与工程学院;
【基金】:国家自然科学基金(61171135)
【分类号】:TN957.52
[Abstract]:A new method of ship target detection based on synthetic Aperture Radar (SAR) image is proposed to solve the problem of large filtering error in the existing algorithms of ship target intelligent detection in synthetic aperture radar (SAR) images. In this method, the theory of hyperspectral anomaly detection is introduced into the ship target detection of SAR image. The SAR image is converted into hyperspectral image by image conversion, and the detection preprocessing of ship target is realized by using anomaly detection algorithm, and the binary map of the region of interest is obtained. The background clutter modeling and the fast detection of ship targets are realized by using the double-layer filtering mechanism. The experimental results show that the proposed algorithm can reduce the filter error, effectively eliminate false targets and sidelobe interference, and has better structure fidelity.
【作者单位】: 国防科学技术大学电子科学与工程学院;
【基金】:国家自然科学基金(61171135)
【分类号】:TN957.52
【相似文献】
相关期刊论文 前10条
1 郭睿;包敏;李军;臧博;邢孟道;;极化SAR图像中的弱小舰船目标检测[J];系统工程与电子技术;2011年06期
2 李为民,石志广,付强;舰船目标与舷外干扰的电磁特征分析与鉴别方法研究[J];湖南科技大学学报(自然科学版);2004年04期
3 山鹏;张振华;王晓红;;基于舰船目标的极化SAR改进滤波算法研究[J];遥测遥控;2011年05期
4 李为民,石志广,付强;舰船目标雷达回波特征信号的建模与仿真[J];系统仿真学报;2005年09期
5 王勇;许小剑;;海上舰船目标的宽带雷达散射特征信号仿真[J];航空学报;2009年02期
6 闫海鹏;于勇;张彬;;基于实测数据的舰船目标前视成像方法研究[J];遥测遥控;2014年04期
7 陈秋菊;杜小勇;胡卫东;郁文贤;;面向识别的雷达舰船目标低分辨回波仿真技术[J];计算机仿真;2007年07期
8 赵艳玲;门丽洁;于l,
本文编号:2454965
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2454965.html