当前位置:主页 > 科技论文 > 信息工程论文 >

超高场磁共振成像射频线圈技术及实时监控系统的研究

发布时间:2019-06-12 19:12
【摘要】:超高场磁共振成像系统是基于大型超导技术产生的超强稳态磁场环境下的磁共振系统。相比传统的磁共振成像系统,主要特点是成像分辨率高。因此可以借助其更为精细的磁共振成像结果进行医学、物理、化学以及相关交叉学科的研究。由于超高场磁共振成像系统的主磁体磁场强度高,所以,相对于低场系统,其射频功放、梯度功放以及射频线圈技术等都需要不同程度的改进。超高场磁共振成像系统的发展实际上是在主磁体强度不断增加的引领下,相关技术的同步发展。本文的主要工作都是基于中科院强磁场中心的9.4 T超高场磁共振成像系统下完成的,主要包括四部分:一,针对超高场下磁共振成像的小型哺乳动物成像应用、微型离体组织成像应用和高分辨率成像应用,设计出相应的射频线圈;二,针对射频线圈优化方法的研究,基于传统鸟笼线圈技术基础,在超高场条件下,通过改变导体表面形状来探索有效的射频线圈优化方案;三,针对磁共振成像系统下扫描过程中的样品微量注射的精确控制,基于虚拟仪器LabVIEW设计研发了一套实时视频监控系统,四,针对如何使磁共振成像系统扫描操作和激光器运行协调一致,设计了一套基于LabVIEW的多模块开关控制系统。对于射频线圈改进技术的研究,主要采用了基于有限元的方法对射频线圈电磁场分布进行分析和仿真,采用耐高功率、低功耗的电容元件,不同形状的导体材料,3D打印材料以及非磁性支撑材料进行不同参数的新型射频线圈的制作,利用活体哺乳动物、离体生物组织以及生理盐水等多种被测样品在网络分析仪和9.4T磁共振平台下进行了参数测试和成像实验。针对实时视频监控系统和开关系统的设计,主要基于LabVIEW软件平台进行编程,利用NI数据采集卡作为控制平台和设备之间的交互,采用计算机和网络分析仪在9.4T磁共振平台下进行试验验证。本文的主要研究充分结合实际应用,在超高场平台下开展,通过对研究方法、研究过程和实验结果进行了深入论述,为以后的超高场磁共振成像射频线圈技术和相关附加应用的进一步发展提供有效参考。
[Abstract]:Ultra-high field magnetic resonance imaging system is a magnetic resonance system based on super steady magnetic field produced by large superconducting technology. Compared with the traditional magnetic resonance imaging system, the main characteristic is the high imaging resolution. Therefore, medical, physical, chemical and related interdisciplinary research can be carried out with the help of its more detailed magnetic resonance imaging results. Because of the high magnetic field intensity of the main magnet in the ultra-high field magnetic resonance imaging system, the RF power amplifier, gradient power amplifier and RF coil technology need to be improved in varying degrees compared with the low field system. The development of ultra-high field magnetic resonance imaging system is actually the synchronous development of related technologies under the guidance of the increasing strength of the main magnet. The main work of this paper is based on the 9.4 T ultra-high field magnetic resonance imaging system of the strong magnetic field center of the Chinese Academy of Sciences, which mainly includes four parts: first, the corresponding RF coils are designed for the small mammal imaging applications, the micro in vitro tissue imaging applications and the high resolution imaging applications of magnetic resonance imaging in ultra high field; Second, according to the research of RF coil optimization method, based on the traditional birdcage coil technology, the effective RF coil optimization scheme is explored by changing the conductor surface shape under the condition of ultra-high field. Third, aiming at the accurate control of sample microinjection in the scanning process of magnetic resonance imaging system, a set of real-time video monitoring system is designed and developed based on virtual instrument LabVIEW. Fourth, a multi-module switching control system based on LabVIEW is designed to make the scanning operation of magnetic resonance imaging system consistent with the operation of laser. For the research of RF coil improvement technology, the electromagnetic field distribution of RF coil is analyzed and simulated based on finite element method. The new RF coil with different parameters is fabricated by high power resistance, low power consumption capacitance element, conductor material with different shape, 3D printing material and non-magnetic supporting material, and the living mammals are used to fabricate the new RF coil with different parameters. The parameters and imaging experiments of in vitro biological tissues and saline were carried out under the network analyzer and 9.4T magnetic resonance platform. Aiming at the design of real-time video surveillance system and switching system, it is mainly programmed based on LabVIEW software platform. NI data acquisition card is used as the interaction between the control platform and the device, and the computer and network analyzer are used to verify the experiment under 9.4T magnetic resonance platform. In this paper, the main research is fully combined with practical application, carried out under the ultra-high field platform, through the research methods, research process and experimental results are discussed in depth, which provides an effective reference for the further development of ultra-high field magnetic resonance imaging RF coil technology and related additional applications in the future.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O482.531;TN948.6

【参考文献】

相关期刊论文 前10条

1 郭佳莹;尉振刚;王立;牛海军;;带有表面肌电反馈功能的电刺激系统[J];中国医疗器械杂志;2016年05期

2 曹辉;曹厚德;;MRI成像装置通道数验收鉴定的研究[J];中国医疗器械杂志;2016年03期

3 刘其文;;基于LabVIEW的虚拟信号发生器的设计[J];无线通信技术;2016年01期

4 董涛;梁思;王慧;杨晓冬;;一种用于fMRI的温度觉刺激装置的设计与验证[J];波谱学杂志;2016年01期

5 孙茂元;王新兵;左都罗;陆培祥;;基于LabVIEW的液滴喷射图像采集和分析系统[J];工业仪表与自动化装置;2015年05期

6 邓瑞芳;;CT与MRI影像学诊断脊柱结核的差异[J];中国医疗器械杂志;2015年04期

7 魏骁;张晓红;赵治栋;孙淑强;杜加友;;便携式宫缩压力监测系统研发[J];中国医疗器械杂志;2014年06期

8 侯淑莲;谢寰彤;陈伟;王广新;赵强;李石玉;;永磁微型磁共振成像仪的射频线圈及鼠成像实验[J];生物医学工程学杂志;2014年05期

9 王承宇;陈宇晨;侯昀;陈卫兰;潘宇婷;;基于Web和LabVIEW的断路器远程监控系统[J];化工自动化及仪表;2014年06期

10 江湛;白景峰;余瑛;;应用LabVIEW的聚焦声场测量系统[J];中国医疗器械杂志;2014年03期

相关博士学位论文 前1条

1 张玉;FDTD与矩量法的关键技术及并行电磁计算应用研究[D];西安电子科技大学;2004年

相关硕士学位论文 前2条

1 李兴鑫;磁共振成像小尺寸射频线圈设计的研究[D];中国计量学院;2015年

2 李佾正;微量注射泵控制系统的设计与实现[D];湖南师范大学;2011年



本文编号:2498239

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2498239.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5576f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com