基于蓝牙信标和指纹库匹配的室内定位算法研究
[Abstract]:Location information, location technology and location service opened a new era of research upsurge, covering many fields such as smart traffic, smart home, smart industry, agriculture, commerce, and smart city. GPS and cellular network positioning technology is widely used for outdoor location services, but due to the non-sight distance and multi-path influence, the signal strength and the positioning accuracy can not reach the indoor positioning requirement, and the power consumption speed is high, and the system cost is high. The present indoor positioning technology is mainly the wireless location technology, which can be seen from the indoor positioning research upsurge in recent years, and the Bluetooth low power consumption 4.0 technology has the advantages of high accuracy, low power consumption, easy deployment, simple system and low cost. At the same time, smart terminal devices such as smart phone, iPhone, iPad and other intelligent terminal devices have developed rapidly, and most of them support the BLE function, and the application of the indoor i Beacon technology is more promoted. It can be said that the Bluetooth positioning technology will become a big pillar of the indoor positioning technology, and the prospect is wide. In this paper, on the basis of the research status of the positioning technology and the location algorithm of the indoor location, the matching and location of the fingerprint library based on the Bluetooth beacon iBeacon is analyzed, and the feasibility and the advantage of the correlation matching and positioning of the iBeacon fingerprint library are analyzed. The main research work of this paper is as follows: (1) The iBeacon beacon arrangement of the typical indoor office environment is studied, and in order to make the RSSI sequence collected at each position in the positioning area to be clearly distinguished, and the actual layout cost and the positioning accuracy requirement are met, And a beacon arrangement scheme of an iBeacon beacon base station is arranged between 3 and 5 meters. (2) The direction, time and personnel interference of the RSSI acquisition in the experimental environment are analyzed and analyzed, and the distribution of the reference point is planned, and the multi-direction multi-direction acquisition scheme is determined. After the fingerprint library is collected, a robust and accurate iBeacon signal fingerprint library is constructed. (3) The correlation coefficient of the unknown point and the reference point is calculated and the correlation coefficient between the unknown point and the reference point is calculated. |? (27) carrying out significance test in the range of (16) to obtain a fingerprint library reference point with high K matching property, and weighting the reference point coordinate with the absolute value of the correlation coefficient as a weighting coefficient to obtain an estimated position. The experimental results show that the correlation coefficient matching position fingerprint library algorithm can increase the probability of the positioning error within 2 meters from 65% to 92%, and compared with the conventional KNN matching and positioning algorithm, it has the advantages of high positioning accuracy, short positioning time and stable algorithm. and (4) designing and implementing the fingerprint database acquisition and real-time positioning of the indoor positioning system based on the iBeacon beacon, And the stored position fingerprint library carries out correlation matching real-time positioning, and then feeds back to the user end to realize the display test of the correlation matching and positioning result.
【学位授予单位】:重庆理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN925
【参考文献】
相关期刊论文 前10条
1 王新;许苗;张京开;刘旺;李为为;王书茂;;温室作业机具室内定位方法研究[J];农业机械学报;2017年01期
2 盛建国;;增强型蓝牙技术在消防室内位置信息业务的应用[J];信息通信;2017年01期
3 卢选民;院文乐;邱杨;杨帆;;一种改进的基于KNN的动态预测指纹定位算法[J];计算机应用研究;2017年07期
4 祁蒙;邱朝阳;;一种红外被动定位方法的工程实现[J];计测技术;2016年03期
5 胡晖;许浩峰;包伟华;;基于相关性算法的超声波回波定位[J];自动化仪表;2015年10期
6 石志京;徐铁峰;刘太君;刘明伟;;基于iBeacon基站的室内定位技术研究[J];移动通信;2015年07期
7 傅莺莺;田振坤;曹显兵;;基于线性回归的协方差分析模型与检验[J];数学的实践与认识;2015年04期
8 ;蓝牙为室内定位助一臂之力[J];数字通信世界;2015年02期
9 莫倩;熊硕;;基于蓝牙4.0的接近度分类室内定位算法[J];宇航计测技术;2014年06期
10 刘春燕;王坚;;基于几何聚类指纹库的约束KNN室内定位模型[J];武汉大学学报(信息科学版);2014年11期
相关博士学位论文 前2条
1 陈丽娜;WLAN位置指纹室内定位关键技术研究[D];华东师范大学;2014年
2 卢少平;基于RFID的AGV定位与导引研究[D];山东大学;2011年
相关硕士学位论文 前10条
1 蔡敏敏;基于WiFi指纹的室内定位系统中采样和匹配算法研究[D];南京邮电大学;2016年
2 鲁希若;WLAN室内定位中位置指纹技术优化[D];南京邮电大学;2016年
3 储兴娟;基于WiFi信号强度的室内定位及其应用研究[D];江苏科技大学;2016年
4 王思雪;WiFi位置指纹定位技术应用算法研究[D];中国地质大学(北京);2016年
5 张剑;基于iBeacon的室内定位技术研究和实现[D];成都理工大学;2016年
6 韦燕华;基于RSS指纹的室内定位方法[D];湘潭大学;2016年
7 申邵辉;基于iBeacon技术的室内定位系统的研究和实现[D];湖南师范大学;2016年
8 李冕和;基于LFMCW的室内高精度定位技术研究[D];电子科技大学;2016年
9 石恒智;基于蓝牙的可自适应指纹室内定位方法研究[D];杭州电子科技大学;2016年
10 谢文华;Spearman相关系数的变量筛选方法[D];北京工业大学;2015年
,本文编号:2501125
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2501125.html