Tanner图中基于矩阵运算的短环分布高效计算方法
发布时间:2019-07-25 13:28
【摘要】:Tanner图中的环分布影响着低密度校验码(LDPC,low-density parity-check code)译码算法的误码率性能,为快速计算出Tanner图中短环的数目,提出一种逐边递推基于矩阵运算的算法。首先定义5种基本图结构,算法在实施过程中可实现结构间的递推。与之前的研究工作相比,该算法对于同一环长提供多种方法进行计算,得到相同的计算结果,进一步证实算法的正确性。新算法不仅能计算出总的环数,还能给出每一条边参与的环数。该算法将时间复杂度从正比于码长N的3次方降为正比于码长的平方与变量节点平均度数D的乘积(DN)。对于大多数的LDPC码,计算环长为g、g+2、g+4的环数需要的时间仅为数秒。
[Abstract]:The ring distribution in Tanner graph affects the bit error rate (BER) performance of low density check code (LDPC,low-density parity-check code) decoding algorithm. In order to quickly calculate the number of short rings in Tanner graph, an edge-by-side recurrence algorithm based on matrix operation is proposed. Firstly, five basic graph structures are defined, and the algorithm can realize the recurrence between structures in the process of implementation. Compared with the previous research work, the algorithm provides a variety of methods for the same ring length to calculate, and the same calculation results are obtained, which further verifies the correctness of the algorithm. The new algorithm can not only calculate the total number of rings, but also give the number of rings in which each edge participates. The algorithm reduces the time complexity from the third power proportional to the code length N to the product of the square of the code length and the mean degree D of the variable node. (DN). For most LDPC codes, it takes only a few seconds to calculate the ring length g 2 and the ring number of g 4 only a few seconds.
【作者单位】: 国电南瑞科技股份有限公司;东南大学信息科学与工程学院;
【基金】:国家自然科学基金资助项目(No.61233007)~~
【分类号】:TN911.22
本文编号:2519115
[Abstract]:The ring distribution in Tanner graph affects the bit error rate (BER) performance of low density check code (LDPC,low-density parity-check code) decoding algorithm. In order to quickly calculate the number of short rings in Tanner graph, an edge-by-side recurrence algorithm based on matrix operation is proposed. Firstly, five basic graph structures are defined, and the algorithm can realize the recurrence between structures in the process of implementation. Compared with the previous research work, the algorithm provides a variety of methods for the same ring length to calculate, and the same calculation results are obtained, which further verifies the correctness of the algorithm. The new algorithm can not only calculate the total number of rings, but also give the number of rings in which each edge participates. The algorithm reduces the time complexity from the third power proportional to the code length N to the product of the square of the code length and the mean degree D of the variable node. (DN). For most LDPC codes, it takes only a few seconds to calculate the ring length g 2 and the ring number of g 4 only a few seconds.
【作者单位】: 国电南瑞科技股份有限公司;东南大学信息科学与工程学院;
【基金】:国家自然科学基金资助项目(No.61233007)~~
【分类号】:TN911.22
【相似文献】
相关期刊论文 前9条
1 赵莹;肖扬;;Tanner码不存在四环的充要条件[J];系统工程与电子技术;2009年02期
2 武玉华;李艳俊;;用Tanner Pro进行数字ASIC设计[J];现代电子技术;2006年18期
3 李水平,刘玉君,邢庆君,李智勇;LDPC码的环分析[J];信息工程大学学报;2003年04期
4 ;IC设计及验证软件系统Tanner EDA[J];CAD/CAM与制造业信息化;2008年07期
5 焦晓鹏;慕建君;周利华;;一种Tanner图短环计数新方法[J];西安电子科技大学学报;2010年02期
6 赵利军;徐晓辉;宋涛;孙殿东;温阳;;基于Tanner Pro平台的ASIC设计[J];山西电子技术;2010年01期
7 ;Intel:即将推出Tanner[J];个人电脑;1998年12期
8 邓志鑫;郝燕玲;;Tanner图和积算法的伪码捕获及性能分析[J];北京邮电大学学报;2009年03期
9 ;[J];;年期
,本文编号:2519115
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/2519115.html