基于变分模态分解的心冲击信号和呼吸信号分离
发布时间:2024-01-31 04:46
为了在睡眠时以非侵入方式监测心冲击信号(BCG)和呼吸信号,使用电阻式薄膜压力传感器嵌入床垫中,将变分模态分解(VMD)算法引入到二维生理信号提取过程.信号经床垫中的柔性压力传感器,通过硬件低通滤波、数字去趋势(DFA)后,利用VMD算法分解出生理信号中心冲击信号与呼吸信号的潜在分量,通过自适应选取有效分量重构BCG信号与呼吸信号.基于Hilbert变换,对比VMD、经验模态分解(EMD)、互补集合经验模态分解(CEEMD)分量的瞬时频率. VMD在0~3.0 Hz内的混叠情况相对于EMD与CEEMD得到改善.采用BlandAltman法,对标准结果和实验重构结果进行一致性评价.结果表明,利用VMD法所得BCG与呼吸信号分别有93.75%和92.5%的点在95%一致性标准界限内,有较高的一致性.
【文章页数】:9 页
本文编号:3890989
【文章页数】:9 页
本文编号:3890989
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/3890989.html