当前位置:主页 > 科技论文 > 信息工程论文 >

基于多线激光雷达的道路和障碍物检测

发布时间:2017-09-06 16:03

  本文关键词:基于多线激光雷达的道路和障碍物检测


  更多相关文章: 基于 多线 激光 雷达 道路 障碍物 检测


【摘要】:
【关键词】:
【学位授予单位】:北京工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN958.98
【目录】:
  • ABSTRACT4-9
  • CHAPTER 1 INTRODUCTION9-19
  • 1.1 Overview of the Intelligent Vehicle and its Research9-14
  • 1.1.1 Intelligent Transportation Systems9-11
  • 1.1.2 Intelligent Vehicle11-12
  • 1.1.3 Competitive Driverless Car12-14
  • 1.2 Common Sensors and Technologies14-17
  • 1.3 Mainly Studies, Work and Organization of Research17
  • 1.4 Specific Research Contents17-18
  • 1.5 Research Arrangements18-19
  • CHAPTER 2 MULTIDIMENSIONAL LASER RADAR19-33
  • 2.1 Introduction19
  • 2.2 General Familiarity with Laser19-27
  • 2.2.1 System of Standard Individual Components21-22
  • 2.2.2 Ranging Principle of IBEO LUX22-27
  • 2.3 Establishment and Transformation between the Coordinate Systems27-31
  • 2.3.1 Three-dimensional Coordinate System, Geometric Transformations27-30
  • 2.3.2 Establish and Coordinate Transformation30-31
  • 2.4 Summary of Chapter 231-33
  • CHAPTER 3 EXPERIMENTAL PLATFORM AND VEHICLE TEST33-43
  • 3.1 Test Platform Overview33-36
  • 3.2 Software System36-37
  • 3.2.1 MATLAB36-37
  • 3.3 Scan and Data Receiving37-41
  • 3.3.1 Analysis of the Scan Data37-38
  • 3.3.2 Segmenting the Scan Data38-41
  • 3.4 Summary of Chapter 341-43
  • CHAPTER 4 ROAD AND OBJECT DETECTION BASED ON MULTI-LAYERLASER RADAR43-65
  • 4.1 Introduction43-44
  • 4.2 Hough Transform Method44-49
  • 4.2.1 Implementation of the Hough Transform44-46
  • 4.2.2 The General Algorithm of Hough Method46-49
  • 4.3 Theil Sen Estimator49-53
  • 4.3.1 Definition49
  • 4.3.2 Statistical Properties and Implementation49-53
  • 4.4 The Method of Least Squares53-58
  • 4.4.1 The Geometry of Ordinary Least Squares54-56
  • 4.4.2 The least-squares Method with the Introduction of the Polynomial56-58
  • 4.4.3 Advantages and Disadvantages of Least Squares Method58
  • 4.5 Bounding Box58-59
  • 4.6 The Partitioning of Data into Clusters Using the Clustering Method59-62
  • 4.6.1 K-means Algorithm59-60
  • 4.6.2 Standard Algorithm60-61
  • 4.6.3 Example of Standard Algorithm61-62
  • 4.6.4 Problem of the K-means Method62
  • 4.7 Summary of Chapter 462-65
  • CHAPTER 5 EXPERIMENTAL RESULTS AND ANALYSIS65-89
  • 5.1 Introduction65
  • 5.2 Object Detection with Hough Line Detection65-72
  • 5.3 Object Detection with Theil Sen Estimator72-75
  • 5.4 Least Squares Method75-80
  • 5.5 Bounding Box80-82
  • 5.6 K-means Clustering82-85
  • 5.6.1 Specify the Number of Clusters83-85
  • 5.7 Comparison of Objects Detection Methods85-88
  • 5.8 Summary of Chapter 588-89
  • CONCLUSION AND OUTLOOK89-91
  • 1. Conclusion89-90
  • 2. Outlook90-91
  • REFERENCES91-95
  • Published Papers during the Academic of Master Degree95-97
  • Acknowledgements97


本文编号:804077

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/804077.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fe1a0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com