基于多线激光雷达的道路和障碍物检测
发布时间:2017-09-06 16:03
本文关键词:基于多线激光雷达的道路和障碍物检测
【摘要】:
【关键词】:
【学位授予单位】:北京工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN958.98
【目录】:
- ABSTRACT4-9
- CHAPTER 1 INTRODUCTION9-19
- 1.1 Overview of the Intelligent Vehicle and its Research9-14
- 1.1.1 Intelligent Transportation Systems9-11
- 1.1.2 Intelligent Vehicle11-12
- 1.1.3 Competitive Driverless Car12-14
- 1.2 Common Sensors and Technologies14-17
- 1.3 Mainly Studies, Work and Organization of Research17
- 1.4 Specific Research Contents17-18
- 1.5 Research Arrangements18-19
- CHAPTER 2 MULTIDIMENSIONAL LASER RADAR19-33
- 2.1 Introduction19
- 2.2 General Familiarity with Laser19-27
- 2.2.1 System of Standard Individual Components21-22
- 2.2.2 Ranging Principle of IBEO LUX22-27
- 2.3 Establishment and Transformation between the Coordinate Systems27-31
- 2.3.1 Three-dimensional Coordinate System, Geometric Transformations27-30
- 2.3.2 Establish and Coordinate Transformation30-31
- 2.4 Summary of Chapter 231-33
- CHAPTER 3 EXPERIMENTAL PLATFORM AND VEHICLE TEST33-43
- 3.1 Test Platform Overview33-36
- 3.2 Software System36-37
- 3.2.1 MATLAB36-37
- 3.3 Scan and Data Receiving37-41
- 3.3.1 Analysis of the Scan Data37-38
- 3.3.2 Segmenting the Scan Data38-41
- 3.4 Summary of Chapter 341-43
- CHAPTER 4 ROAD AND OBJECT DETECTION BASED ON MULTI-LAYERLASER RADAR43-65
- 4.1 Introduction43-44
- 4.2 Hough Transform Method44-49
- 4.2.1 Implementation of the Hough Transform44-46
- 4.2.2 The General Algorithm of Hough Method46-49
- 4.3 Theil Sen Estimator49-53
- 4.3.1 Definition49
- 4.3.2 Statistical Properties and Implementation49-53
- 4.4 The Method of Least Squares53-58
- 4.4.1 The Geometry of Ordinary Least Squares54-56
- 4.4.2 The least-squares Method with the Introduction of the Polynomial56-58
- 4.4.3 Advantages and Disadvantages of Least Squares Method58
- 4.5 Bounding Box58-59
- 4.6 The Partitioning of Data into Clusters Using the Clustering Method59-62
- 4.6.1 K-means Algorithm59-60
- 4.6.2 Standard Algorithm60-61
- 4.6.3 Example of Standard Algorithm61-62
- 4.6.4 Problem of the K-means Method62
- 4.7 Summary of Chapter 462-65
- CHAPTER 5 EXPERIMENTAL RESULTS AND ANALYSIS65-89
- 5.1 Introduction65
- 5.2 Object Detection with Hough Line Detection65-72
- 5.3 Object Detection with Theil Sen Estimator72-75
- 5.4 Least Squares Method75-80
- 5.5 Bounding Box80-82
- 5.6 K-means Clustering82-85
- 5.6.1 Specify the Number of Clusters83-85
- 5.7 Comparison of Objects Detection Methods85-88
- 5.8 Summary of Chapter 588-89
- CONCLUSION AND OUTLOOK89-91
- 1. Conclusion89-90
- 2. Outlook90-91
- REFERENCES91-95
- Published Papers during the Academic of Master Degree95-97
- Acknowledgements97
本文编号:804077
本文链接:https://www.wllwen.com/kejilunwen/xinxigongchenglunwen/804077.html