基于双稳态结构的压电精密定位驱动器设计
发布时间:2018-02-12 20:32
本文关键词: 压电驱动器 双稳态结构 位移放大机构 多级驱动 优化设计 出处:《大连理工大学》2015年硕士论文 论文类型:学位论文
【摘要】:精密定位驱动技术是实现精密制造和精确测量的重要途径,在航空航天、武器系统、微机械制造、集成电路、超精密加工、半导体技术、微电子封装(SMT)、生命与医疗科学等领域具有广泛的应用需求。精密定位驱动技术的实现依赖于智能驱动材料与弹性支撑结构的集成设计,而压电智能材料所固有的迟滞非线性己成为限制定位精度提高的瓶颈,并且在特殊情况下会引起系统震荡,造成系统位移输出不稳定。因此,需要从驱动器弹性结构设计方面探索和研究消除迟滞影响的新途径。本论文主要展开了以下研究工作:(1)针对传统压电驱动器驱动位移小、能耗高和受压电材料迟滞非线性影响严重的问题,提出两种基于双稳态弹性元件的新型压电驱动器设计方法,利用双稳态结构在特定位置无需驱动电压即可定位的特征来消除材料迟滞造成的定位误差。具体包括:(a)以保证双稳态特征前提下的低驱动能耗为目标,建立了双稳态梁式驱动器压电材料布局优化设计模型,得到一种中间铺设压电材料的新型双稳态驱动器,分析了压电材料的铺设位置和长度对驱动能耗和行程的影响关系;(b)以增大驱动器行程为目标,提出一种新型大行程双稳态驱动器的设计方法,协同设计压电材料布置、双稳态梁构型、位移放大机构及其连接形式等参数,使定位点处所需要的驱动电压为零,进而消除迟滞的影响,数值实验验证了所提出的设计方法的可行性。(2)针对多级精密定位的应用需求,提出多单胞结构级联的多稳态定位驱动器的设计方法。(a)以低驱动电压为目标,借助拓扑优化技术,建立了双稳态鼓包式驱动器的压电材料布置优化设计模型;(b)以具有不同行程的双稳态鼓包作为单胞结构,设计了多胞式大行程多级精密定位驱动器,以双稳态特征下的低驱动电压为设计目标,建立了单胞表面压电材料布置优化设计方法。以单胞结构表面不同扇区压电材料的驱动电压和加载序列为控制参数,通过控制不同单胞和不同扇区的驱动电压和加载序列,进而实现驱动器的伸缩平动和弯曲运动,实现空间准确定位功能,数值实验证明了多级定位驱动器设计方法的有效性。本论文获得国家自然科学基金项目(51105059,11372063)和中航产学研专项资金资助项目(CXY2011DG34)的资助,在此表示感谢。
[Abstract]:Precise positioning and driving technology is an important way to achieve precision manufacturing and accurate measurement, in aerospace, weapon systems, micro-mechanical manufacturing, integrated circuits, ultra-precision processing, semiconductor technology, Microelectronic packaging has a wide range of applications in life and medical sciences. The realization of precise positioning drive technology depends on the integrated design of intelligent driving materials and elastic supporting structures. The inherent hysteresis nonlinearity of piezoelectric intelligent materials has become the bottleneck to limit the accuracy of positioning, and in special cases will cause system oscillation, resulting in the system displacement output instability. It is necessary to explore and study a new way to eliminate the hysteresis effect from the aspect of actuator elastic structure design. In this thesis, the following research work is carried out: 1) aiming at the small driving displacement of traditional piezoelectric actuators, Two new design methods of piezoelectric actuator based on bistable elastic element are proposed, which have high energy consumption and are seriously affected by hysteresis nonlinearity of piezoelectric material. In order to eliminate the location error caused by material hysteresis, the bistable structure can be located at a certain position without driving voltage. Specifically, the goal is to ensure the low drive energy consumption under the condition of bistable characteristic. The optimal design model of piezoelectric material layout for bistable beam actuator is established, and a new type of bistable actuator with intermediate piezoelectric material is obtained. In this paper, the influence of laying position and length of piezoelectric material on driving energy consumption and stroke is analyzed. Aiming at increasing drive stroke, a new design method of bistable actuator with large stroke is proposed to design piezoelectric material arrangement in cooperation. The parameters of bistable beam configuration, displacement amplification mechanism and its connection form make the driving voltage at the position point zero, thus eliminating the effect of hysteresis. Numerical experiments verify the feasibility of the proposed design method. (2) aiming at the application demand of multi-stage precise positioning, a design method of multi-steady state positioning driver with multi-cell structure cascade is proposed. The design method of multi-steady-state positioning driver with multi-cell structure is aimed at the low driving voltage, and the topology optimization technique is used. An optimal design model of piezoelectric material arrangement for bistable bistable drum actuator is established. The bistable bistable drum with different stroke is used as the unit cell structure, and the multi-stage precise positioning actuator with large stroke is designed. Based on the design goal of low driving voltage with bistable characteristics, an optimal design method for piezoelectric material layout on the surface of a single cell is established. The driving voltage and loading sequence of different sectors of piezoelectric materials on the surface of the unit cell structure are taken as the control parameters. By controlling the driving voltage and loading sequence of different unit cells and different sectors, the retractive translation and bending motion of the driver can be realized, and the function of accurate positioning in space can be realized. Numerical experiments have proved the effectiveness of the design method of multi-stage positioning driver. This paper is supported by the National Natural Science Foundation of China (51105059) and the CXY2011DG34).
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TB381;TH703
【参考文献】
相关期刊论文 前1条
1 谢涛;刘静;刘军考;;结构拓扑优化综述[J];机械工程师;2006年08期
,本文编号:1506498
本文链接:https://www.wllwen.com/kejilunwen/yiqiyibiao/1506498.html