基于剪切型压电陶瓷的二维精密平台研究
本文选题:精密平台 切入点:粘滑驱动 出处:《哈尔滨工业大学》2016年硕士论文
【摘要】:随着纳米科学技术的快速发展,纳米机电系统已经广泛应用于光学、电子学、精密测量学、制造加工学等领域。在纳米机电系统中,纳米定位技术是一个十分前沿且非常重要的分支,纳米定位技术能实现被控物体的高精度微小移动,它是人类探索微观世界过程中非常重要的工具之一。具有纳米级精度的精密平台已经广泛应用于扫描电子显微镜、原子力显微镜和精密光学平台中,且对分辨率和频率响应有较高的要求。在这种背景下,设计一个精密可靠的二维精密平台系统,并在此基础上展开研究。由于剪切型压电陶瓷结构紧凑、响应频率高,且可以直接驱动载物台运动,因此选择剪切型压电陶瓷代替传统的伸缩型压电陶瓷作为驱动元件,可以大大减小驱动元件的负载和精密平台的结构尺寸,从而保证精密平台系统拥有更好的分辨率、响应速度和稳定性。故本文设计的二维精密平台系统采用两片剪切型压电陶瓷作为驱动元件,并将其上下叠加布置,同时保证其运动方向相互垂直。当这两片压电陶瓷分别被驱动电压波形驱动时,压电陶瓷组上表面将在水平面内产生二维移动,并基于粘滑原理驱动载物台在二维平面内实现纳米级的精确运动。进而,对载物台进行建模,分析载物台在运动过程中的转动、倾倒和移动问题。通过载物台的结构设计保证所设计的载物台在运动过程中不会发生转动和倾倒。对于确定的精密平台结构,驱动电压波形对系统性能有着非常大的影响。首先分析传统锯齿波驱动电压波形在控制过程中存在的问题,之后针对具体的运动位移和分辨率要求,设计具有较高平均速度的粗定位波形和具有较高分辨率的精定位波形,并通过MATLAB仿真方法对各种驱动电压波形的驱动效果进行比较。最后,根据设计结果搭建精密平台样机,通过所搭建的驱动电路控制压电陶瓷组运动,载物台在压电陶瓷组的驱动下可以实现二维平面内高精度、高分辨率的精密定位,并用电容测微仪检测载物台的运动状态。根据实验方案,完成对精密平台性能的测试实验,从而验证了最终的精密平台样机能够满足本文所设计的性能指标。
[Abstract]:With the rapid development of nanotechnology, nano-electromechanical systems have been widely used in the fields of optics, electronics, precision measurement, manufacturing and processing. Nano-localization technology is a very advanced and very important branch. Nano-positioning technology can achieve high precision and small movement of controlled objects. It is one of the most important tools in the process of exploring the microcosm. The precision platform with nanometer precision has been widely used in scanning electron microscope, atomic force microscope and precision optical platform. Under this background, a precise and reliable two-dimensional precision platform system is designed and studied. Due to the compact structure of shear piezoelectric ceramics, the response frequency is high. Therefore, the shear piezoelectric ceramic instead of the traditional telescopic piezoelectric ceramic as the driving element can greatly reduce the load of the driving element and the structure size of the precision platform. In order to ensure better resolution, response speed and stability of the precision platform system, the two-dimensional precision platform system designed in this paper uses two pieces of shear piezoelectric ceramics as driving elements, and superimposed them. At the same time, the direction of motion is perpendicular to each other. When the two piezoelectric ceramics are driven by the driving voltage waveforms, the upper surface of the piezoelectric ceramic group will move 2-D in the horizontal plane. Based on the principle of sticking-slip, the platform is driven to realize the accurate movement of nanometer level in two-dimensional plane. Then, the model of the platform is built, and the rotation of the platform in the course of motion is analyzed. Dumping and moving problems. The design of the structure of the platform ensures that the designed platform does not rotate and dump during the course of motion. The driving voltage waveform has a great influence on the performance of the system. Firstly, the problems existing in the control process of the traditional sawtooth wave driving voltage waveform are analyzed, and then the specific motion displacement and resolution requirements are analyzed. The coarse positioning waveform with high average velocity and the precise positioning waveform with high resolution are designed. The driving effects of various driving voltage waveforms are compared by MATLAB simulation method. Finally, a precision platform prototype is built according to the design results. By using the drive circuit to control the movement of the piezoelectric ceramic group, the high precision and high resolution positioning can be realized under the driving of the piezoelectric ceramic group. The motion state of the platform is detected by the capacitive micrometer. According to the experimental scheme, the performance of the precision platform is tested, which verifies that the final precision platform prototype can meet the performance index designed in this paper.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TH703
【相似文献】
相关期刊论文 前10条
1 朱维佳;;棱镜在分光仪载物台上摆放位置的确定[J];山东建材学院学报;1993年01期
2 杨凡;;快速调节分光计的方法[J];才智;2010年08期
3 张文霄;测量免疫沉淀环直径的简易投影放大器[J];解放军医学杂志;1988年04期
4 万伟;;分光计调节方法的修正[J];大学物理实验;2014年04期
5 王文莉;;分光计调节难点的分解和解调[J];洛阳师范学院学报;2007年05期
6 李丽霞,刘波;分光计的调节方法探讨[J];孝感学院学报;2000年04期
7 谢志文;二、活用反射定律调节分光计[J];工科物理;1994年04期
8 林琳;;自动生物显微镜移动载物台的仿真设计[J];生命科学仪器;2009年04期
9 王应德;一种快速调节分光计的方法[J];长沙大学学报;2000年02期
10 戴伟明,李晋川,邹远文,樊瑜波;显微镜自动载物台及图像采集自动化研究[J];实验室研究与探索;2005年10期
相关会议论文 前2条
1 苏东川;李喜德;;探针测量中压电载物台竖向位移的精细标定研究[A];第十二届全国实验力学学术会议论文摘要集[C];2009年
2 韩修林;丁智勇;;分光计实验中望远镜调节整难点剖析[A];第六届全国高等学校物理实验教学研讨会论文集(上册)[C];2010年
相关硕士学位论文 前5条
1 徐晓羽;批量细胞自动注射方案研究[D];东北大学;2014年
2 李海洋;基于剪切型压电陶瓷的二维精密平台研究[D];哈尔滨工业大学;2016年
3 陈江;扫描电镜载物台定位系统关键技术研究[D];燕山大学;2005年
4 蒋德才;生物显微镜自动控制载物台的设计与开发[D];山东大学;2007年
5 戴伟明;显微镜自动载物台研制及相关算法研究[D];四川大学;2005年
,本文编号:1675200
本文链接:https://www.wllwen.com/kejilunwen/yiqiyibiao/1675200.html