当前位置:主页 > 科技论文 > 仪器仪表论文 >

应用于等离子体密度测量的全光纤M-Z干涉仪研究

发布时间:2018-05-15 15:54

  本文选题:光纤马赫-曾德尔干涉仪 + 脉冲等离子体密度 ; 参考:《电子科技大学》2015年硕士论文


【摘要】:喷气式Z箍缩等离子体是实现受控核聚变的可能途径之一。Z箍缩装置发射出的脉冲等离子体可以作为高能驱动源轰击氘氚靶源实现惯性约束聚变的燃料点火。为了便于理解该装置的辐射行为,脉冲等离子体密度的测量一直是这一领域研究的重点内容。激光干涉法与其他技术相比具有动态响应范围大,精度高,可以实现对等离子体密度的非接触测量等优点而受到广泛关注。但由光学分立元件和空间光路构成的激光干涉仪具有结构复杂,光路调校难度大,对环境要求苛刻等缺点,在现场应用难度大。光纤技术的快速发展使得高性能的光纤无源器件可以替代光学分立元件完成光学系统的搭建,这样的系统结构简单,除激光探针外所有的光路都在光纤内部,调校简单,可以适应复杂的应用环境。本文研制了用于脉冲等离子体密度测量的全光纤Mach-Zehnder激光干涉仪较好地满足了脉冲等离子体密度的测试需求。论文对用于等离子体密度测量的电磁探针技术,微波诊断技术,光谱诊断技术以及激光诊断技术进行了分析比较,对Michelson干涉系统和Mach-Zehnder干涉系统进行了研究,从而选择了更适合于脉冲等离子体密度测量的Mach-Zehnder干涉系统方案。深入分析了Mach-Zehnder干涉仪的工作原理,对关键器件的原理以及参数进行了详细分析和计算。在此基础上,设计研制了满足脉冲等离子体密度测量的全光纤Mach-Zehnder激光干涉仪。论文还对干涉仪光路匹配、激光器光纤耦合调校以及光纤准直器的空间对准等干涉仪的关键调试方法进行了详细讨论,将干涉仪用于现场测量,得到了良好的实验结果。研制的全光纤激光干涉仪选用的激光波长为632.8nm,可以对密度在1013~1016cm-3范围内的等离子体进行单点的密度测量,时间分辨率为1μs,相对误差在2%以内,空间分辨率为0.5mm。据我们所知,这是国内首次将全光纤激光干涉仪用于脉冲等离子体密度测量。
[Abstract]:The jet type Z pinch plasma is one of the possible ways to realize the controlled nuclear fusion. The pulsed plasma emitted by the.Z stirrup device can be used as a high-energy source to bombard the deuterium and tritium target source to realize the ignition of the inertial confinement fusion fuel. In order to understand the radiation behavior of the device, the measurement of the pulse plasma density has always been this field. Compared with other technologies, laser interferometry has large dynamic response range and high precision, and can realize the advantages of non-contact measurement of plasma density. However, the laser interferometer composed of optical discrete components and space optical path has complex structure, difficulty in adjusting optical path and environmental requirements. The rapid development of optical fiber technology makes the high-performance optical fiber passive devices can replace the optical discrete components to build the optical system. This system has simple structure. All optical paths except the laser probe are in the optical fiber, the adjustment is simple and can adapt to the complex application environment. The whole fiber Mach-Zehnder laser interferometer for measuring the density of the pulsed plasma is better satisfied with the testing requirement of the pulse plasma density. The paper analyzes and compares the electromagnetic probe technology, the microwave diagnosis technology, the spectral diagnosis technology and the laser diagnosis technology for the plasma density measurement, and the Michelson dry. The system and Mach-Zehnder interference system have been studied, and the Mach-Zehnder interference system which is more suitable for pulse plasma density measurement is selected. The working principle of Mach-Zehnder interferometer is analyzed in depth. The principle and parameters of the key devices are analyzed and calculated in detail. On this basis, the design and development of the system have been designed and developed. All optical fiber Mach-Zehnder laser interferometer with pulse plasma density measurement is discussed in detail. The key debugging methods of interferometer optical path matching, laser optical fiber coupling adjustment and spatial alignment of optical fiber collimator are discussed in detail. The interferometer is used in field measurement, and good experimental results are obtained. The laser wavelength of the fiber laser interferometer is 632.8nm, which can measure the density of the plasma in the range of 1013~1016cm-3. The time resolution is 1 mu s, the relative error is less than 2%. The spatial resolution is 0.5mm. according to our knowledge. This is the first time in China to use all fiber laser interferometer for pulsed plasma density measurement. Quantity.

【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TL612;TH744.3

【参考文献】

相关期刊论文 前2条

1 李小银,林兆祥,刘煜炎,陈扬锓,龚顺生;激光大气等离子体光谱特性实验研究[J];光学学报;2004年08期

2 揭银先,高翔,方自琛,邓必河,沈哲,廖子英,谢纪康,卫明生,李广,吕惠娟,郭其良,李建刚;用远红外HCN激光干涉仪测量等离子体电子密度[J];红外技术;1997年02期



本文编号:1892972

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yiqiyibiao/1892972.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9bc73***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com