当前位置:主页 > 科技论文 > 自动化论文 >

握力握速和FMRI环境下的任务状态对脑活动的影响

发布时间:2018-01-07 13:02

  本文关键词:握力握速和FMRI环境下的任务状态对脑活动的影响 出处:《昆明理工大学》2017年硕士论文 论文类型:学位论文


  更多相关文章: 动态脑网络 ELM FMRI 光纤传感器


【摘要】:目前的脑机接口研究主要是集中在多领域多技术多模式的融合中进行的复杂研究,既有BCI的多种运动大小速率的研究,也有FMRI环境下的任务状态对脑活动的影响,虽然很多在研工作已经走出了实验室,甚至进行了产业化发展,然而,很多工作并不精细。本文探讨了握力握速和FMRI环境下的任务状态对脑活动的影响,得到了良好的结论,这对于未来脑电和FMRI的融合技术形成重大意义。论文的主要内容如下:主要在以下几个方面展开研究,并取得了一定的成果:(1)基于脑机接口研究握力及想象对脑电活动的调制机理,通过右手实际握力和想象握速的三种任务状态进一步证实握速及想象的脑电活动是可以区分的,且握力值的大小也会对脑电值产生影响。通过CSP特征提取、SVM分类和脑网络分析方法识别握速运动及想象是有效的,尤其是SVM分类最高可达SVM分类最高可达92%,握力及想象对运动对侧脑区产生重要影响,将对脑电精细控制产生重要影响。(2)基于脑机接口研究握速及想象对脑电活动的调制机理,通过左右手实际握速和想象握速的三种任务状态进一步证实握速及想象的脑电活动是可以区分的,且握速值的大小也会对脑电值产生影响。通过CSP特征提取、SVM分类和脑网络分析方法识别握速运动及想象是有效的,尤其是SVM分类最高可达93%,握速及想象对运动对侧脑区产生重要影响,该研究的思路和方法可望做后续的相关研究(3)综合前人的研究基础,综述了 FMRI对脑活动的调制研究,明确了 FMRI可以提供更直接和更精确的测量大脑活动的快速变化,从而有助于BCI的发展,更提出了用于研究功能核磁共振环境下的脑区激活分布和脑网络连接的握力球。
[Abstract]:The current BCI research is mainly focused on the multi-domain multi-technology and multi-mode fusion of the complex research, there are a variety of BCI research on the size and speed of motion. There is also the impact of task status on brain activity in the FMRI environment, although a lot of research work has been out of the laboratory, even industrial development, however. A lot of work is not elaborate. This paper discusses the impact of grip grip speed and task state in FMRI environment on brain activity, and draws a good conclusion. This is of great significance for the future of EEG and FMRI fusion technology. The main contents of this paper are as follows: mainly in the following aspects of research. Some achievements were obtained: (1) based on brain-computer interface, the modulation mechanism of grip force and imagination to EEG activity was studied. Through the right hand actual grip strength and imaginary grip speed of the three task states further confirmed that grip speed and imaginary EEG activity can be distinguished and the size of grip force value will also affect the EEG value. CSP feature extraction. SVM classification and brain network analysis are effective in identifying grip motion and imagination, especially in SVM classification up to 92% SVM classification. Grip strength and imagination have an important effect on the contralateral brain area, which will have an important effect on the fine control of EEG.) based on the brain-computer interface, the modulation mechanism of grip speed and imagination to EEG activity is studied. Through the left and right hand grip speed and imagination grip speed of the three mission states further confirmed that grip speed and imaginary EEG activity can be distinguished. And the size of the holding speed will also affect the EEG value. It is effective to identify the grip motion and imagination by CSP feature extraction and brain network analysis. In particular, the SVM classification can be up to 93 percent, grip speed and imagination have an important impact on the contralateral motor brain area. In this paper, the modulation of brain activity by FMRI is reviewed. It is clear that FMRI can provide more direct and accurate measurement of the rapid changes of brain activity, thus contributing to the development of BCI. Furthermore, a gripping ball was proposed to study the distribution of brain activation and the connections of brain networks under functional nuclear magnetic resonance (fMRI).
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP181;R318

【参考文献】

相关期刊论文 前10条

1 徐晓晓;喻婧;雷旭;;想象未来的认知加工成分及其脑网络[J];心理科学进展;2015年03期

2 王力;张雄;仲雪飞;樊兆雯;张玉;孙瀚;;时频分析在语言想像脑机接口中的应用[J];东南大学学报(自然科学版);2014年06期

3 伏云发;徐保磊;李永程;李洪谊;王越超;余正涛;;基于运动相关皮层电位握力运动模式识别研究[J];自动化学报;2014年06期

4 Yunfa Fu;Baolei Xu;Yongcheng Li;Yuechao Wang;Zhengtao Yu;Hongyi Li;;Single-trial decoding of imagined grip force parameters involving the right or left hand based on movement-related cortical potentials[J];Chinese Science Bulletin;2014年16期

5 王行愚;金晶;张宇;王蓓;;脑控:基于脑-机接口的人机融合控制[J];自动化学报;2013年03期

6 伏云发;王越超;李洪谊;徐保磊;李永程;;直接脑控机器人接口技术[J];自动化学报;2012年08期

7 刘冲;赵海滨;李春胜;王宏;;基于CSP与SVM算法的运动想象脑电信号分类[J];东北大学学报(自然科学版);2010年08期

8 梁夏;王金辉;贺永;;人脑连接组研究:脑结构网络和脑功能网络[J];科学通报;2010年16期

9 赵海滨;王宏;李春胜;;基于Alpha波的异步脑-机接口系统[J];东北大学学报(自然科学版);2009年10期

10 李明爱;刘净瑜;郝冬梅;;基于改进CSP算法的运动想象脑电信号识别方法[J];中国生物医学工程学报;2009年02期

相关硕士学位论文 前2条

1 李丹;TMS对字母工作记忆影响的研究[D];北京协和医学院;2013年

2 李窦哲;脑—机接口系统中脑电信号采集与特征识别[D];山西大学;2010年



本文编号:1392643

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1392643.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a4e49***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com