当前位置:主页 > 科技论文 > 自动化论文 >

基于混合混沌粒子群算法的装配线平衡问题研究

发布时间:2018-01-17 19:30

  本文关键词:基于混合混沌粒子群算法的装配线平衡问题研究 出处:《浙江工业大学学报》2017年01期  论文类型:期刊论文


  更多相关文章: 装配线平衡 融合优化 模拟退火 混沌 粒子群算法


【摘要】:为了实现装配线多目标最优化平衡,建立了以装配线平衡率与平滑指数最优化为目标函数的多目标装配线平衡模型.由于粒子群算法在求解时易发生"早熟"现象,陷入局部最优的缺陷,因此引入模拟退火算法与混沌思想,设计了一种三者相融合的混合混沌粒子群算法.算法借助混沌所具有的遍历性、随机性及规律性,对粒子速度的更新调整进行干预;利用模拟退火算法在一定范围内以变化的概率接受较差解的特点,有效抑制"早熟"现象,实现对于装配线的平衡优化,通过实例验证了算法的有效性.
[Abstract]:In order to achieve multi-objective optimal balance of assembly line. A multi-objective assembly line equilibrium model with the objective function of assembly line equilibrium rate and smooth exponential optimization is established. Due to the precocious phenomenon of particle swarm optimization (PSO), it falls into the defect of local optimum. Therefore, a hybrid chaotic particle swarm optimization algorithm is designed by introducing simulated annealing algorithm and chaos theory. The algorithm is based on the ergodicity, randomness and regularity of chaos. Intervention in the updating adjustment of particle velocity; Using the characteristic that simulated annealing algorithm accepts the inferior solution in a certain range with varying probability, the phenomenon of "precocity" is effectively suppressed, and the balance optimization of assembly line is realized. The validity of the algorithm is verified by an example.
【作者单位】: 浙江工业大学机械工程学院;
【分类号】:F273;F275;TP18
【正文快照】: 装配线平衡问题(Assembly line balancing prob-lem,简称ALBP)一直都是制造领域中极为重要的一项研究课题,其平衡与否将直接对企业的生产效率、生产成本、市场竞争力产生巨大影响.Bryton于1954年首次系统论述了装配线平衡问题,并提出了一种“会聚过程法”来解决ALBP[1].Scholl

【相似文献】

相关期刊论文 前10条

1 秦玉灵;孔宪仁;罗文波;;混沌量子粒子群算法在模型修正中的应用[J];计算机工程与应用;2010年02期

2 陈治明;;新型量子粒子群算法及其性能分析研究[J];福建电脑;2010年05期

3 牛永洁;;一种新型的混合粒子群算法[J];信息技术;2010年10期

4 全芙蓉;;粒子群算法的理论分析与研究[J];硅谷;2010年23期

5 刘衍民;赵庆祯;邵增珍;;一种改进的完全信息粒子群算法研究[J];曲阜师范大学学报(自然科学版);2011年01期

6 朱童;李小凡;鲁明文;;位置加权的改进粒子群算法[J];计算机工程与应用;2011年05期

7 熊智挺;谭阳红;易如方;陈赛华;;一种并行的自适应量子粒子群算法[J];计算机系统应用;2011年08期

8 孟纯青;;非线性粒子群算法[J];微计算机应用;2011年08期

9 任伟建;武璇;;一种动态改变学习因子的简化粒子群算法[J];自动化技术与应用;2012年10期

10 刘飞,孙明,李宁,孙德宝,邹彤;粒子群算法及其在布局优化中的应用[J];计算机工程与应用;2004年12期

相关会议论文 前10条

1 朱童;李小凡;鲁明文;;位置加权的改进粒子群算法[A];中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(上)[C];2012年

2 陈定;何炳发;;一种新的二进制粒子群算法在稀疏阵列综合中的应用[A];2009年全国天线年会论文集(上)[C];2009年

3 陈龙祥;蔡国平;;基于粒子群算法的时滞动力学系统的时滞辨识[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年

4 于颖;李永生;於孝春;;新型离散粒子群算法在波纹管优化设计中的应用[A];第十一届全国膨胀节学术会议膨胀节设计、制造和应用技术论文选集[C];2010年

5 刘卓倩;顾幸生;;一种基于信息熵的改进粒子群算法[A];系统仿真技术及其应用(第7卷)——'2005系统仿真技术及其应用学术交流会论文选编[C];2005年

6 熊伟丽;徐保国;;粒子群算法在支持向量机参数选择优化中的应用研究[A];2007中国控制与决策学术年会论文集[C];2007年

7 方卫华;徐兰玉;陈允平;;改进粒子群算法在大坝力学参数分区反演中的应用[A];2012年中国水力发电工程学会大坝安全监测专委会年会暨学术交流会论文集[C];2012年

8 熊伟丽;徐保国;;单个粒子收敛中心随机摄动的粒子群算法[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年

9 马向阳;陈琦;;以粒子群算法求解买卖双方存货主从对策[A];第十二届中国管理科学学术年会论文集[C];2010年

10 赵磊;;基于粒子群算法求解多目标函数优化问题[A];第二十一届中国(天津)’2007IT、网络、信息技术、电子、仪器仪表创新学术会议论文集[C];2007年

相关博士学位论文 前10条

1 李庆伟;粒子群算法及电厂若干问题的研究[D];东南大学;2016年

2 杜毅;多阶段可变批生产线重构的研究[D];广东工业大学;2016年

3 尹浩;求解Web服务选取问题的粒子群算法研究[D];东北大学;2014年

4 王芳;粒子群算法的研究[D];西南大学;2006年

5 安镇宙;家庭粒子群算法及其奇偶性与收敛性分析[D];云南大学;2012年

6 刘建华;粒子群算法的基本理论及其改进研究[D];中南大学;2009年

7 黄平;粒子群算法改进及其在电力系统的应用[D];华南理工大学;2012年

8 胡成玉;面向动态环境的粒子群算法研究[D];华中科技大学;2010年

9 张静;基于混合离散粒子群算法的柔性作业车间调度问题研究[D];浙江工业大学;2014年

10 张宝;粒子群算法及其在卫星舱布局中的应用研究[D];大连理工大学;2007年

相关硕士学位论文 前10条

1 张忠伟;结构优化中粒子群算法的研究与应用[D];大连理工大学;2009年

2 李强;基于改进粒子群算法的艾萨炉配料优化[D];昆明理工大学;2015年

3 付晓艳;基于粒子群算法的自调节隶属函数模糊控制器设计[D];河北联合大学;2014年

4 余汉森;粒子群算法的自适应变异研究[D];南京信息工程大学;2015年

5 梁计锋;基于改进粒子群算法的交通控制算法研究[D];长安大学;2015年

6 杨伟;基于粒子群算法的氧乐果合成过程建模研究[D];郑州大学;2015年

7 李程;基于粒子群算法的AS/RS优化调度方法研究[D];陕西科技大学;2015年

8 樊伟健;基于混合混沌粒子群算法求解变循环发动机数学模型问题[D];山东大学;2015年

9 陈百霞;考虑风电场并网的电力系统无功优化[D];山东大学;2015年

10 戴玉倩;基于混合动态粒子群算法的软件测试数据自动生成研究[D];江西理工大学;2015年



本文编号:1437670

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1437670.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户880e8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com