大口径金属螺旋管内壁焊缝自动跟踪打磨机器人的研制
本文关键词:大口径金属螺旋管内壁焊缝自动跟踪打磨机器人的研制 出处:《东华大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 管道机器人 结构设计 有限元分析 动力学仿真 大口径螺旋管
【摘要】:随着国家发展资源整合战略性布局的持续推进,管路运输业对大口径螺旋管的需求量明显增加。为便于大口径金属螺旋管内壁喷涂处理,提高内壁表面质量,延长其使用寿命,需要对焊接后的管道内壁焊缝进行打磨。目前国内制管行业范围内通常使用人工手持角磨机作业,不但效率低下且不能保证打磨精度,并且严重危害工人身体健康。国外相关设备属于受限进口的特殊管道机器人,采购难度大,性价比太低而不宜采用。为此,根据相关企业要求,开发并设计一种用于大口径金属螺旋管内壁焊缝自动跟踪打磨的管道机器人,对提高螺旋管内壁焊缝打磨质量和作业效率、保障打磨工序一线操作工的身心健康和降低人力成本等具有重要意义和深远影响。本文的主要研究内容如下:(1)简要介绍了大口径螺旋管的应用背景以及国内外管道内作业特种机器人的研究现状,阐述了本文的研究内容和方法;(2)分析大口径螺旋管内壁焊缝分布形态情况和焊缝打磨技术要求,提出和设计了分段作业的“拼接式”打磨工艺;(3)开展了管道机器人的总体设计和造型,其中包括:机器人主体支撑装置、三轴回转作业装置、打磨进给装置和智能检测模块。完成了支撑机构和驱动传动机构的详细设计,并对重要电气元部件选型校核;(4)设计了管道机器人打磨控制系统,包括了焊缝自动跟踪子系统、恒力打磨控制子系统、多工位分段作业的“二次接刀”控制子系统。(5)利用SolidWorks/Simulation模块对管道机器人的机械机构进行了有限元分析,得到了关键受力结构件在载荷作用下形态特征,如空心回转轴和支撑安装机壳的受力变形情况在合理的区间范围,从而验证了机械结构设计的合理性和选材的可靠性;(6)基于多体动力学仿真平台ADAMS,开展了管道机器人在管道内支撑作业的运动仿真,通过在各个支撑腿上预设传感器获得了在空间中标记点的坐标移动图像。分析并验证了三足电动支撑设计的可行性;
[Abstract]:With the continuous promotion of the strategic layout of national development resources integration, the demand for large diameter spiral pipe in pipeline transportation industry is obviously increased. In order to facilitate the spray treatment of the inner wall of large caliber metal spiral pipe, the surface quality of inner wall is improved. In order to prolong its service life, it is necessary to polish the welded pipe inner wall weld. At present, manual handheld angle grinder is usually used in the domestic pipe making industry, which is not only inefficient but also can not guarantee the grinding accuracy. And serious harm to the health of workers. Foreign related equipment is a restricted import of special pipeline robots, procurement is difficult, the ratio of performance to price is too low to use. Therefore, according to the requirements of relevant enterprises. A pipe robot is developed and designed for automatic tracking and grinding of large diameter metal spiral tube inner weld, which can improve the quality and working efficiency of the inner wall welding seam of spiral pipe. It is of great significance and far-reaching influence to ensure the physical and mental health of the workers in the grinding process and to reduce the labor cost. The main contents of this paper are as follows: 1). This paper briefly introduces the application background of large caliber helical pipe and the research status of special robot in pipeline operation at home and abroad. The research contents and methods of this paper are expounded. 2) analyzing the distribution of weld seam on the inner wall of large diameter helical pipe and the technical requirements of welding seam grinding, and putting forward and designing the "splicing" grinding technology for segmental operation; The overall design and modeling of the pipeline robot are carried out, including: the main body support device of the robot, the three-axis rotary operation device. Grinding feed device and intelligent detection module. Completed the detailed design of supporting mechanism and driving drive mechanism, and checked the selection of important electrical components; The grinding control system of pipeline robot is designed, which includes automatic seam tracking subsystem and constant force grinding control subsystem. The "secondary cutter" control subsystem. 5) the finite element analysis of the mechanical mechanism of pipeline robot is carried out by using SolidWorks/Simulation module. The shape characteristics of the key structural parts under load are obtained, such as the deformation of the hollow rotary shaft and the supporting mounting housing in a reasonable range. The rationality of mechanical structure design and the reliability of material selection are verified. Based on the multi-body dynamics simulation platform, Adams, the kinematic simulation of pipeline robot in pipeline is carried out. The coordinate moving images of marking points in space are obtained by preset sensors on each support leg, and the feasibility of tripodal electric support design is analyzed and verified.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 邵琦;谢哲东;;管道机器人的发展与展望[J];农业与技术;2016年05期
2 LI Te;MA ShuGen;LI Bin;WANG MingHui;WANG YueChao;;Axiomatic design method to design a screw drive in-pipe robot passing through varied curved pipes[J];Science China(Technological Sciences);2016年02期
3 王惠华;游福成;段怀锋;闫涛;卜文斌;;基于二值图像连通域提取的图像滤波方法[J];北京印刷学院学报;2015年06期
4 LI Te;MA Shugen;LI Bin;WANG Minghui;WANG Yuechao;;Fuzzy Theory Based Control Method for an In-pipe Robot to Move in Variable Resistance Environment[J];Chinese Journal of Mechanical Engineering;2015年06期
5 郭建慧;;电气设计钢管的类型及应用[J];科技创新导报;2015年21期
6 胡晓霞;肖秦琨;;基于多组合内容的图像识别机制[J];电子设计工程;2015年08期
7 Bin Li;于波;Xiao-long Wang;郭峰;Feng Zhou;;Correlation between Conformation Change of Polyelectrolyte Brushes and Lubrication[J];Chinese Journal of Polymer Science;2015年01期
8 陈畅;;大功率短波发射机自动调谐步进电机工作原理与维护[J];内蒙古广播与电视技术;2014年04期
9 吕德深;梁承权;;基于STC12C5A60S2与PID算法的数控电源的设计与实现[J];电子设计工程;2014年09期
10 蒋若蓉;李文亚;罗贤道;杨茜;;热输入对7075铝合金搅拌摩擦焊接头质量的影响[J];电焊机;2014年04期
相关硕士学位论文 前10条
1 罗洁;管道攀爬机器人结构设计及行走动力特性分析[D];武汉科技大学;2015年
2 马利平;牵引式排水管道清淤机器人的研究[D];华北理工大学;2015年
3 周慧珍;先导平衡式高压气动比例减压阀结构设计与特性分析[D];兰州理工大学;2014年
4 赵琦;X射线实时成像检测管外扫查器研究[D];东北石油大学;2013年
5 艾超;基于方向小波变换的图像边缘检测算子研究[D];西安电子科技大学;2013年
6 任朝栋;基于视频的车辆检测跟踪系统中图像预处理算法的研究[D];郑州大学;2011年
7 王文丽;各种图像边缘提取算法的研究[D];北京交通大学;2010年
8 王召利;特殊管道弯曲度测量中的图像处理技术[D];西安电子科技大学;2010年
9 谢惠祥;伸缩式管道机器人动力学建模与控制系统设计[D];国防科学技术大学;2009年
10 谯正武;管道内表面处理机器人结构设计及运动稳定性研究[D];兰州理工大学;2009年
,本文编号:1439971
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1439971.html