哈密瓜糖度可见近红外光谱在线检测系统设计研究
本文关键词: 近红外 在线检测 哈密瓜 糖度 出处:《石河子大学》2017年硕士论文 论文类型:学位论文
【摘要】:哈密瓜作为新疆的特色水果,深受人们的喜爱。近年来,哈密瓜每年的出口量逐年增加,但其产值却未增长。哈密瓜在田间地头不经过任何检测处理就直接进入市场售卖,将会影响哈密瓜的品质及售卖价格,不能做到按质定价。本研究以新疆特色水果哈密瓜为研究对象,以哈密瓜糖度作为检测指标,设计并搭建了基于可见近红外光谱技术的哈密瓜糖度在线检测系统,该系统主要包含硬件部分和光谱采集软件部分的设计。为验证设计搭建的检测系统的可行性和有效性,基于该平台进行一系列的试验研究。同时运用不同的建模方法和不同的光谱预处理方法对哈密瓜样品光谱及糖度进行建模研究分析。本文主要完成的工作及得出的结论如下:(1)设计并搭建了哈密瓜糖度可见近红外光谱在线检测系统,该系统主要包含硬件和光谱采集软件两部分的设计。硬件部分完成了输送装置、光照模块、光谱采集装置中相关仪器的选型及相关部件的设计;光谱采集软件完成了光谱采集相关功能模块的设计。(2)完成哈密瓜糖度可见近红外光谱在线检测系统的测试与集成,并进行了在线试验。利用该系统采集了哈密瓜三种不同速度下(0.1235m/s、0.15m/s、0.19675m/s)的在线光谱数据,采用多元散射校正(MSC)、标准正态变量变换(SNV)、导数(SD)及其组合的方法对采集到的哈密瓜在线光谱进行预处理,建立偏最小二乘法(PLS)模型分析不同预处理方法对其建模精度的影响,综合对比三种速度下的偏最小二乘法(PLS)建模结果可得,选取的较优预处理方法为SNV和SD结合的方法,选取的较优在线光谱采集速度为0.1235m/s。(3)根据选取的较优在线速度,建立了SMLR模型,尽量减少波段数量,为下一步快速检测提供支持。结果表明,波段数在10到15时的限制条件下,波段数量为15时,所建模型效果相对较好,此时的相关系数rcv和交互验证均方根误差RMSECV分别为0.6187和0.741。模型所选择的15个波段分别为437.76nm,476.33nm,536.11nm,580.47nm,593.97nm,619.04nm,638.32nm,659.54nm,667.25nm,673.03nm,703.89nm,752.10nm,819.60nm,865.88nm,925.66nm。(4)通过在线试验验证了设计搭建的哈密瓜糖度可见近红外在线检测系统具有一定的可行性。
[Abstract]:Hami melon, as the characteristic fruit of Xinjiang, is deeply loved by people. In recent years, the annual export volume of Hami melon has increased year by year. But its output value has not increased. Hami melon in the field without any test treatment directly into the market, will affect the quality and sale price of Hami melon. This study took Hami melon as the research object and the sugar content of Hami melon as the detection index. An on-line detection system for sugar content of Hami melon was designed and built based on visible near infrared spectroscopy. The system mainly includes the design of hardware and spectrum acquisition software. The feasibility and effectiveness of the detection system designed to verify the design. Based on this platform, a series of experiments were carried out. At the same time, different modeling methods and different spectral pretreatment methods were used to model and analyze the spectrum and sugar content of Hami melon sample. The conclusions are as follows:. (. 1) the on-line detection system of sugar content of Hami melon by visible near infrared spectroscopy was designed and built. The system mainly includes the design of hardware and spectrum acquisition software. The hardware part completes the selection of related instruments and the design of related parts in the transport device, illumination module, spectral acquisition device. Spectral acquisition software completed the design of spectral acquisition related function module. 2) completed the sugar content of Hami melon visible near infrared spectrum on-line detection system testing and integration. The on-line spectral data of 0.1235m / s 0.15m / s 0.19675m / s of Hami melon were collected by using the system. Multivariate scattering correction (MSCT), standard normal variable transform (SNV), derivative SDI) and their combination were used to preprocess the collected on-line spectrum of Hami melon. The partial least square (PLS) model is established to analyze the influence of different preprocessing methods on the modeling accuracy. The optimal pretreatment method is the combination of SNV and SD, and the optimal on-line spectral acquisition speed is 0.1235 m / s. The SMLR model is established to reduce the number of bands as much as possible and to provide support for the next rapid detection. The results show that the number of bands is 15:00 when the number of bands is limited from 10 to 15:00. The effect of the model is relatively good. The correlation coefficient rcv and the root-mean-square error (RMSECV) of cross-validation are 0.6187 and 0.741 respectively. The 15 bands selected by the model are 437.76 nm. 476.33nm,536.11nm,580.47nm,593.97nm,619.04nm,638.32nm,659.54nm. 667.25nm,673.03nm,703.89nm,752.10nm,819.60nm,865.88nm. 925.66 nm.f.) the feasibility of the system was verified by on-line test.
【学位授予单位】:石河子大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S652.1;TP274
【参考文献】
相关期刊论文 前10条
1 王运祥;马本学;杨杰;王静;叶晋涛;蒋伟;吕琛;张巍;;双锥压缩式哈密瓜承载托辊的设计及参数计算[J];农机化研究;2016年09期
2 杨建丽;杨英;户金鸽;;新疆哈密瓜生产中存在的主要问题及建议[J];新疆农业科技;2013年04期
3 马世榜;汤修映;徐杨;彭彦昆;田潇瑜;付姓;;可见/近红外光谱结合遗传算法无损检测牛肉pH值[J];农业工程学报;2012年18期
4 陈小央;;甜瓜内在品质无损检测方法研究进展[J];中国蔬菜;2011年10期
5 徐惠荣;陈晓伟;应义斌;;基于多元校正法的香梨糖度可见/近红外光谱检测[J];农业机械学报;2010年12期
6 田海清;王春光;杨晓清;;厚皮甜瓜无损检测方法的研究现状及发展趋势[J];农机化研究;2010年10期
7 张淑娟;张海红;王凤花;赵聪慧;杨国强;;柿子可溶性固形物含量的可见-近红外光谱检测[J];农业工程学报;2009年S2期
8 田海清;应义斌;徐惠荣;陆辉山;谢丽娟;;运动西瓜可见/近红外光谱采集系统及品质检测试验研究[J];光谱学与光谱分析;2009年06期
9 ;Determination of soluble solid content and acidity of loquats based on FT-NIR spectroscopy[J];Journal of Zhejiang University(Science B:An International Biomedicine & Biotechnology Journal);2009年02期
10 潘立刚;张缙;陆安祥;马智宏;韩平;;农产品质量无损检测技术研究进展与应用[J];农业工程学报;2008年S2期
相关博士学位论文 前3条
1 陈香维;猕猴桃近红外光谱无损检测技术研究[D];西北农林科技大学;2009年
2 田海清;西瓜品质可见/近红外光谱无损检测技术研究[D];浙江大学;2006年
3 何乃波;山东果业发展与结构优化研究[D];山东农业大学;2005年
相关硕士学位论文 前5条
1 张德虎;河套蜜瓜品质可见近红外光谱检测研究[D];内蒙古农业大学;2014年
2 李锋霞;基于高光谱成像技术的哈密瓜坚实度检测研究[D];石河子大学;2014年
3 杨磊;梨子内在品质的近红外漫反射光谱无损检测技术研究[D];南京农业大学;2008年
4 王传梁;基于近红外漫反射光谱分析技术的大米加工精度检测方法的研究[D];南京农业大学;2007年
5 刘蓉;近红外光谱分析中模型优化方法的初步研究[D];天津大学;2003年
,本文编号:1464677
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1464677.html