当前位置:主页 > 科技论文 > 自动化论文 >

基于深度神经网络的语音识别模型研究

发布时间:2018-01-26 10:56

  本文关键词: 语音识别 深度学习 深度神经网络 联合优化正交投影和估计 固定长度依次遗忘编码 前馈序列记忆神经网络 出处:《中国科学技术大学》2017年博士论文 论文类型:学位论文


【摘要】:语音作为最自然、最有效的交流途径,一直是人机通信和交互领域最受关注的研究内容之一。自动语音识别的主要目的是让计算机能够"听懂"人类的语音.将语音波形信号转化成文本。它是实现智能的人机交互的关键技术之一。声学模型和语言模型是语音识别系统的两个核心模块。传统的语音识别系统普遍采用基于高斯混合模型和隐马尔科夫模型(Gaussian Mixture Model-Hidden Markov Model,GMM-HMM)的声学模型以及n-gram语言模型。近年来,随着深度学习的兴起,基于深度神经网络的声学模型和语言模型相比于传统的GMM-HMM和n-gram模型分别都获得了显著的性能提升。在此背景下,本论文从深度神经网络的模型结构出发,展开了较为系统和深入的研究,一方面对现有的模型进行优化,另一方面结合语音及语言信号的特性探究新的网络结构模型,从而提高基于深度神经网络的语音识别系统的性能和训练效率。首先,本文研究了基于前馈全连接深度神经网络(Deep Neural Networks,DNN)的语音声学建模。我们分别探索了基于sigmoid非线性激活函数的DNN(sigmoid-DNN)和基于整流线性单元(Rectified Linear Units,ReLU)的 DNN(RL-DNN)的大词汇量连续语音识别。首先针对传统的sigmoid-DNN,我们通过研究发现其隐层权重越往高层稀疏性越强的特性,提出了一种隐层节点递减的DNN结构,命名为sDNN。实验结果表明sDNN可以在保持性能基本不变的情况下将模型参数量减少到45%,从而获得2倍的训练加速。进一步地我们提出将dropout预训练作为一种神经网络的初始化方法,可以获得相比于传统的无监督Pre-training更好的性能。然后我们针对RL-DNN的研究发现,通过合理的参数配置,可以采用基于大批量的随机梯度下降算法来训练RL-DNN,从而能够利用多个图形处理单元(Graphic Processing Unit,GPU)进行并行化训练,可以获得超过10倍的训练加速。进一步地我们提出了一种绑定标量规整的方法用于优化RL-DNN的训练,不仅使得训练更加稳定,而且能够获得显著的性能提升。其次,本文提出一种固定长度依次遗忘编码(Fixed-size Ordinally Forgetting Encoding,FOFE)方法用于语言模型建模。FOFE通过简单的顺序遗忘机制来对序列中的单词位置进行建模,可以将任何可变长度的单词序列唯一地编码成固定大小的表达。本研究中,我们提出基于FOFE的前馈神经网络语言模型(FOFE-FNNLM)。实验结果表明,在不使用任何反馈连接的情况下,基于FOFE的FNNLM显著的优于标准的基于1-of-k编码作为输入的FNNLM,同时也优于基于循环神经网络(Recurrent Neural Networks,RNN)的语言模型。再次,本文提出了一种新颖的神经网络结构,命名为前馈序列记忆神经网络(Feedforward Sequential Memory Networks,FSMN)。FSMN 可以对时序信号中的长时相关性(long-term dependency)进行建模而不需要使用反馈连接。本研究所提出来的FSMN可以认为是在标准的前馈全连接神经网络的隐藏层中配备了一些可学习的记忆模块。这些记忆模块使用抽头延迟线结构将长时上下文信息编码成固定大小的表达作为一种短时记忆机制。我们在语音识别声学建模以及语言模型建模任务上验证了所提出的FSMN模型。实验结果表明,FSMN不仅可以取得相比于当前最流行的循环神经网络更好的性能,而且训练更加高效。在此基础上,我们探索了 FSMN模型的改进,通过结合低秩矩阵分解的思路以及修改记忆模块的编码方式提出了一种结构简化的FSMN,命名为cFSMN。同时通过在cFSMN的记忆模块之间添加跳转连接,避免深层网络训练过程梯度消失的问题,实现了非常深层的cFSMN的训练。我们在Switchboard数据库以及Fisher数据库进行的声学建模实验验证了所提出的模型的性能。Fisher数据库的实验结果表明基于深层的cFSMN的识别系统相比于主流的基于BLSTM的识别系统可以获得13.8%的相对词错误率下降。最后,本文提出一种用于高维数据建模的新模型,称之为联合优化正交投影和估计(Hybrid Orthogonal Projection and Estimation,HOPE)模型。HOPE 将线性正交投影和混合模型融合为一个生成模型。HOpe模型本身可以从无标注的数据中通过无监督最大似然估计方法进行无监督学习,同时也可以采用带标注的数据进行有监督学习。更为有趣的是,我们的研究阐述了 HOPE模型和神经网络之间的密切关系。HOPE可以作为一个新的工具用于探究深度学习的黑盒子,以及用于有监督和无监督深度神经网络的训练。我们在语音识别TIM1T数据库以及图像分类MNIST数据库验证了基于HOPE模型的无监督、半监督以及有监督学习。实验结果表明,基于HOPE框架训练的神经网络相比于现有的神经网络在无监督、半监督以及有监督学习任务上都获得显著的性能提升。
[Abstract]:In this paper , we propose a kind of neural network initialization method to train RL - DNN , which is based on Gaussian Mixture Model - Hidden Markov Model ( GMHMM ) , which can be used to train RL - DNN . In recent years , we propose a method to improve the performance and training efficiency of speech recognition system based on the advanced neural network . This paper presents a novel neural network structure named Feedforward Sequential Memory Networks ( FSMN ) . This paper proposes a new model for the modeling of high - dimensional data . The experimental results show that FSMN can be used as a new tool for studying deep - learning black boxes and training more efficiently . The experimental results show that FSMN can not only get better performance than the current most popular neural network , but also can be used for supervised learning .

【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TN912.34;TP183

【相似文献】

相关期刊论文 前10条

1 杨晓帅 ,付玫;神经网络技术让管理更轻松[J];软件世界;2000年11期

2 云中客;新的神经网络来自于仿生学[J];物理;2001年10期

3 唐春明,高协平;进化神经网络的研究进展[J];系统工程与电子技术;2001年10期

4 李智;一种基于神经网络的煤炭调运优化方法[J];长沙铁道学院学报;2003年02期

5 程科,王士同,杨静宇;新型模糊形态神经网络及其应用研究[J];计算机工程与应用;2004年21期

6 王凡,孟立凡;关于使用神经网络推定操作者疲劳的研究[J];人类工效学;2004年03期

7 周丽晖;从统计角度看神经网络[J];统计教育;2005年06期

8 赵奇 ,刘开第 ,庞彦军;灰色补偿神经网络及其应用研究[J];微计算机信息;2005年14期

9 袁婷;;神经网络在股票市场预测中的应用[J];软件导刊;2006年05期

10 尚晋;杨有;;从神经网络的过去谈科学发展观[J];重庆三峡学院学报;2006年03期

相关会议论文 前10条

1 徐春玉;;基于泛集的神经网络的混沌性[A];1996中国控制与决策学术年会论文集[C];1996年

2 周树德;王岩;孙增圻;孙富春;;量子神经网络[A];2003年中国智能自动化会议论文集(上册)[C];2003年

3 罗山;张琳;范文新;;基于神经网络和简单规划的识别融合算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年

4 郭爱克;马尽文;丁康;;序言(二)[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

5 钟义信;;知识论:神经网络的新机遇——纪念中国神经网络10周年[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

6 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

7 金龙;朱诗武;赵成志;陈宁;;数值预报产品的神经网络释用预报应用[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

8 田金亭;;神经网络在中学生创造力评估中的应用[A];第十二届全国心理学学术大会论文摘要集[C];2009年

9 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年

10 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年

相关重要报纸文章 前10条

1 美国明尼苏达大学社会学博士 密西西比州立大学国家战略规划与分析研究中心资深助理研究员 陈心想;维护好创新的“神经网络硬件”[N];中国教师报;2014年

2 卢业忠;脑控电脑 惊世骇俗[N];计算机世界;2001年

3 葛一鸣 路边文;人工神经网络将大显身手[N];中国纺织报;2003年

4 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年

5 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年

6 本报记者 刘霞;美用DNA制造出首个人造神经网络[N];科技日报;2011年

7 健康时报特约记者  张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年

8 刘力;我半导体神经网络技术及应用研究达国际先进水平[N];中国电子报;2001年

9 ;神经网络和模糊逻辑[N];世界金属导报;2002年

10 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年

相关博士学位论文 前10条

1 杨旭华;神经网络及其在控制中的应用研究[D];浙江大学;2004年

2 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年

3 石艳超;忆阻神经网络的混沌性及几类时滞神经网络的同步研究[D];电子科技大学;2014年

4 王新迎;基于随机映射神经网络的多元时间序列预测方法研究[D];大连理工大学;2015年

5 付爱民;极速学习机的训练残差、稳定性及泛化能力研究[D];中国农业大学;2015年

6 李辉;基于粒计算的神经网络及集成方法研究[D];中国矿业大学;2015年

7 王卫苹;复杂网络几类同步控制策略研究及稳定性分析[D];北京邮电大学;2015年

8 张海军;基于云计算的神经网络并行实现及其学习方法研究[D];华南理工大学;2015年

9 李艳晴;风速时间序列预测算法研究[D];北京科技大学;2016年

10 陈辉;多维超精密定位系统建模与控制关键技术研究[D];东南大学;2015年

相关硕士学位论文 前10条

1 章颖;混合不确定性模块化神经网络与高校效益预测的研究[D];华南理工大学;2015年

2 贾文静;基于改进型神经网络的风力发电系统预测及控制研究[D];燕山大学;2015年

3 李慧芳;基于忆阻器的涡卷混沌系统及其电路仿真[D];西南大学;2015年

4 陈彦至;神经网络降维算法研究与应用[D];华南理工大学;2015年

5 董哲康;基于忆阻器的组合电路及神经网络研究[D];西南大学;2015年

6 武创举;基于神经网络的遥感图像分类研究[D];昆明理工大学;2015年

7 李志杰;基于神经网络的上证指数预测研究[D];华南理工大学;2015年

8 陈少吉;基于神经网络血压预测研究与系统实现[D];华南理工大学;2015年

9 张韬;几类时滞神经网络稳定性分析[D];渤海大学;2015年

10 邵雪莹;几类时滞不确定神经网络的稳定性分析[D];渤海大学;2015年



本文编号:1465412

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1465412.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f11f3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com