当前位置:主页 > 科技论文 > 自动化论文 >

一种新的基于稀疏表示及自学习遥感图像超分重建算法

发布时间:2018-01-31 13:06

  本文关键词: 稀疏表示 字典学习 遥感图像 超分重建 出处:《重庆师范大学学报(自然科学版)》2017年02期  论文类型:期刊论文


【摘要】:【目的】遥感图像重建容易引入噪声或边缘出现不规则性,而它又在遥感图像的处理中能起到非常重要的作用,提出新的算法来得到更好的处理结果。【方法】通过对遥感图像进行分块,利用K-SVD算法对遥感图像自身进行字典学习,获得能够稀疏表示高分辨率遥感图像的字典,然后进行特征提取、独立成分分析降维、高分辨率遥感图像的重建等操作。【结果】实现了对遥感图像超分辨率的重建。【结论】该方法提高了图像的峰值信噪比,通过实验验证了算法高效性。
[Abstract]:[objective] remote sensing image reconstruction is easy to introduce noise or edge irregularity, and it can play a very important role in remote sensing image processing. A new algorithm is proposed to obtain better processing results. [methods] by dividing remote sensing images into blocks, K-SVD algorithm is used to study the dictionary of remote sensing images themselves. A dictionary which can sparse represent high-resolution remote sensing images is obtained, and then feature extraction is carried out, and dimension reduction by independent component analysis (ICA). [results] the super-resolution reconstruction of remote sensing images is realized. [conclusion] this method improves the peak signal-to-noise ratio (PSNR) of the images, and the efficiency of the algorithm is verified by experiments.
【作者单位】: 成都理工大学地学空间信息技术国土资源部重点实验室/遥感与GIS研究所;攀枝花学院数学与计算机学院;攀枝花学院土木与建筑工程学院;
【基金】:国家自然科学基金(No.41372340) 国土资源部地学空间信息技术重点实验室开放基金(No.KLGSIT2016-10) 重庆市教委科学技术研究项目(No.KJ1400519) 2015年度攀枝花学院博士专项科研基金项目(No.0210600038)
【分类号】:TP751
【正文快照】: 2.攀枝花学院数学与计算机学院617000;3.攀枝花学院土木与建筑工程学院,四川攀枝花617000)遥感图像的分辨率是遥感成像系统对输出图像细节特征分辨能力的一种度量,也是遥感图像中对地物细微目标程度的辨识指标,是地物信息详细程度的一种体现,在国土资源管理中具有非常重要的意

【相似文献】

相关期刊论文 前10条

1 李伟;;遥感图像中的道路提取[J];自动化博览;2006年05期

2 李传龙;李颖;马龙;;一种新的遥感图像海岸线检测方法[J];计算机仿真;2010年08期

3 张学良;肖鹏峰;冯学智;;基于图像内容层次表征的遥感图像分割方法[J];中国图象图形学报;2012年01期

4 秦其明;遥感图像自动解译面临的问题与解决的途径[J];测绘科学;2000年02期

5 陈小琪;现代计算机印前制版技术在遥感图像印制中的应用研究——以《长江经济带可持续发展地图集》为例[J];地球信息科学;2000年02期

6 邓湘金,彭海良;一种基于遥感图像的机场检测方法[J];测试技术学报;2002年02期

7 余杰千,方涛,陈雍业;一种有效的遥感图像无缝分割方法[J];计算机应用;2003年12期

8 吴为禄;遥感图像中的云层消除处理[J];铁路航测;2003年01期

9 于辉,徐军;彩色遥感图像目标提取方法研究[J];遥感技术与应用;2003年06期

10 黄勇杰,王树国,刘俊义,陈东;遥感图像去云算法研究[J];仪器仪表学报;2003年S2期

相关会议论文 前10条

1 张凤春;董增寿;刘明君;;基于局部方差均衡的遥感图像增强方法[A];第六届全国信息获取与处理学术会议论文集(2)[C];2008年

2 邓冰;林宗坚;彭晓东;;遥感图像信息度量的原理与方法[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年

3 江兴方;江鸿;何贤强;;遥感图像两种半自动拼接方法的研究[A];全国农业遥感技术研讨会论文集[C];2009年

4 罗睿;张永生;范永弘;邓雪清;;遥感图像基于内容查询的研究与实践[A];第十三届全国遥感技术学术交流会论文摘要集[C];2001年

5 陈东;庞怡杰;黄勇杰;;大倾斜航空遥感图像快速自动镶嵌技术[A];图像 仿真 信息技术——第二届联合学术会议论文集[C];2002年

6 黄勇杰;王树国;刘俊义;陈东;;遥感图像去云算法研究[A];首届信息获取与处理学术会议论文集[C];2003年

7 谢建春;赵荣椿;;遥感图像中的军用机场识别算法研究[A];信号与信息处理技术第三届信号与信息处理全国联合学术会议论文集[C];2004年

8 陈姚;王金亮;李石华;;遥感图像中云层遮挡影响消除处理方法研究述评[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年

9 张磊;朱磊;;遥感图像中直线目标的检测[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年

10 邱磊;李国辉;衡祥安;;一种基于交互学习的遥感图像挖掘方法[A];第一届建立和谐人机环境联合学术会议(HHME2005)论文集[C];2005年

相关重要报纸文章 前5条

1 蒋建科邋孙宏金 陈树琛;传回清晰遥感图像[N];人民日报;2008年

2 记者 郑千里;北京地区有了航空遥感图像[N];科技日报;2000年

3 本报通讯员;煤航遥感院获美国快鸟遥感图像西部代理权[N];中煤地质报;2005年

4 王石;印度通过“快鸟”影像发现古墓地[N];中国测绘报;2010年

5 记者 马彦平 张桂敏;澳大利亚钾矿钻探启动[N];农资导报;2011年

相关博士学位论文 前10条

1 朱光;基于遥感图像的交通道路目标识别方法研究[D];吉林大学;2015年

2 祁友杰;基于SoC技术的遥感图像快速匹配方法研究[D];东南大学;2016年

3 江兴方;遥感图像去云方法的研究及其应用[D];南京理工大学;2007年

4 滕鑫鹏;遥感图像道路提取研究[D];江苏大学;2014年

5 刘春红;超光谱遥感图像降维及分类方法研究[D];哈尔滨工程大学;2005年

6 刘哲;基于信息融合的遥感图像处理方法研究[D];西北工业大学;2002年

7 强赞霞;遥感图像的融合及应用[D];华中科技大学;2005年

8 杜根远;海量遥感图像内容检索关键技术研究[D];成都理工大学;2011年

9 陶午沙;基于结构模型的遥感图像军事阵地目标特征分析及其识别技术研究[D];国防科学技术大学;2004年

10 林剑;基于模糊理论的遥感图像分割方法研究[D];中南大学;2003年

相关硕士学位论文 前10条

1 邱磊;基于内容的遥感图像挖掘方法研究[D];国防科学技术大学;2005年

2 陈浩;高分辨遥感图像灾区建筑检测[D];南京理工大学;2015年

3 朱然;大数据量复杂背景下桥梁水坝目标快速识别[D];电子科技大学;2015年

4 王静静;基于NSCT和Shearlet变换的遥感图像增强研究[D];新疆大学;2014年

5 柴宏磊;基于知识的遥感图像港口目标识别[D];电子科技大学;2015年

6 冯一鸣;基于遥感图像中港口目标的分割算法研究与实现[D];西安电子科技大学;2014年

7 吴云坤;遥感图像变化检测技术研究[D];国防科学技术大学;2013年

8 王旭;无参考遥感图像质量综合评价算法研究[D];西安电子科技大学;2015年

9 宋玉梅;基于遥感图像的内河航道识别研究[D];重庆交通大学;2015年

10 张少辉;基于刃边法的遥感图像重建方法研究[D];西安电子科技大学;2014年



本文编号:1479133

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1479133.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户129bf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com