当前位置:主页 > 科技论文 > 自动化论文 >

基于LM-BP神经网络的农机总动力预测

发布时间:2018-02-05 16:52

  本文关键词: 农机总动力 预测 LM-BP神经网络 出处:《农机化研究》2017年01期  论文类型:期刊论文


【摘要】:利用黑龙江省1983-2013年农机总动力数据,运用标准BP神经网络和LM-BP神经网络对黑龙江省未来5年的农机总动力进行预测。预测结果表明:在达到相同的误差目标值(即计算期望精度),LM-BP神经网络与标准PB相比,具有更快的收敛速度。如果需进一步减小误差目标值(即提高计算期望精度)时,标准BP神经网络在16h内都无法满足给定的精度要求;而LM-BP神经网络在20s内即可满足给定的精度要求。此时,LMBP神经网络的收敛速度优势非常明显,而拟合的精度也进一步提高,表明LM-BP神经网络具有较高的预测精度。准确的预测黑龙江省农机总动力,可为黑龙江省农业机械化发展规划的制定和近阶段农业机械化的发展水平提供参考依据。
[Abstract]:Using the total power data of agricultural machinery in Heilongjiang Province from 1983 to 2013. The standard BP neural network and LM-BP neural network are used to predict the total power of agricultural machinery in Heilongjiang province in the next five years. Compared with the standard PB, the LM-BP neural network has a faster convergence rate, if the error target value is further reduced (that is, to improve the expected accuracy of calculation). The standard BP neural network can not meet the given precision requirement within 16 hours. The LM-BP neural network can meet the given precision requirement in 20 s. At this time, the convergence speed advantage of LMBP neural network is very obvious, and the fitting accuracy is further improved. The results show that LM-BP neural network has high prediction accuracy and accurate prediction of the total power of agricultural machinery in Heilongjiang Province. It can provide reference for the formulation of agricultural mechanization development plan and the development level of agricultural mechanization in Heilongjiang province.
【作者单位】: 东北农业大学工程学院;
【基金】:国家自然科学基金项目(31071331) 黑龙江省教育厅科学技术研究项目(12511049)
【分类号】:TP183

【相似文献】

相关期刊论文 前10条

1 云中客;新的神经网络来自于仿生学[J];物理;2001年10期

2 唐春明,高协平;进化神经网络的研究进展[J];系统工程与电子技术;2001年10期

3 李智;一种基于神经网络的煤炭调运优化方法[J];长沙铁道学院学报;2003年02期

4 程科,王士同,杨静宇;新型模糊形态神经网络及其应用研究[J];计算机工程与应用;2004年21期

5 王凡,孟立凡;关于使用神经网络推定操作者疲劳的研究[J];人类工效学;2004年03期

6 周丽晖;从统计角度看神经网络[J];统计教育;2005年06期

7 赵奇 ,刘开第 ,庞彦军;灰色补偿神经网络及其应用研究[J];微计算机信息;2005年14期

8 袁婷;;神经网络在股票市场预测中的应用[J];软件导刊;2006年05期

9 尚晋;杨有;;从神经网络的过去谈科学发展观[J];重庆三峡学院学报;2006年03期

10 杨钟瑾;;神经网络的过去、现在和将来[J];青年探索;2006年04期

相关会议论文 前10条

1 徐春玉;;基于泛集的神经网络的混沌性[A];1996中国控制与决策学术年会论文集[C];1996年

2 周树德;王岩;孙增圻;孙富春;;量子神经网络[A];2003年中国智能自动化会议论文集(上册)[C];2003年

3 罗山;张琳;范文新;;基于神经网络和简单规划的识别融合算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年

4 郭爱克;马尽文;丁康;;序言(二)[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

5 钟义信;;知识论:神经网络的新机遇——纪念中国神经网络10周年[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

6 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

7 金龙;朱诗武;赵成志;陈宁;;数值预报产品的神经网络释用预报应用[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年

8 田金亭;;神经网络在中学生创造力评估中的应用[A];第十二届全国心理学学术大会论文摘要集[C];2009年

9 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年

10 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年

相关重要报纸文章 前10条

1 美国明尼苏达大学社会学博士 密西西比州立大学国家战略规划与分析研究中心资深助理研究员 陈心想;维护好创新的“神经网络硬件”[N];中国教师报;2014年

2 卢业忠;脑控电脑 惊世骇俗[N];计算机世界;2001年

3 葛一鸣 路边文;人工神经网络将大显身手[N];中国纺织报;2003年

4 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年

5 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年

6 本报记者 刘霞;美用DNA制造出首个人造神经网络[N];科技日报;2011年

7 健康时报特约记者  张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年

8 刘力;我半导体神经网络技术及应用研究达国际先进水平[N];中国电子报;2001年

9 ;神经网络和模糊逻辑[N];世界金属导报;2002年

10 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年

相关博士学位论文 前10条

1 杨旭华;神经网络及其在控制中的应用研究[D];浙江大学;2004年

2 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年

3 石艳超;忆阻神经网络的混沌性及几类时滞神经网络的同步研究[D];电子科技大学;2014年

4 王新迎;基于随机映射神经网络的多元时间序列预测方法研究[D];大连理工大学;2015年

5 付爱民;极速学习机的训练残差、稳定性及泛化能力研究[D];中国农业大学;2015年

6 李辉;基于粒计算的神经网络及集成方法研究[D];中国矿业大学;2015年

7 王卫苹;复杂网络几类同步控制策略研究及稳定性分析[D];北京邮电大学;2015年

8 张海军;基于云计算的神经网络并行实现及其学习方法研究[D];华南理工大学;2015年

9 李艳晴;风速时间序列预测算法研究[D];北京科技大学;2016年

10 曾U喺,

本文编号:1492356


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1492356.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户232fd***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com