基于改进粒子群算法的重力坝断面优化研究
本文关键词: 重力坝 断面优化 粒子群算法 惯性权重 出处:《西北农林科技大学学报(自然科学版)》2017年01期 论文类型:期刊论文
【摘要】:【目的】将改进粒子群算法用于重力坝断面的优化计算,为重力坝的优化设计提供支持。【方法】针对传统粒子群算法(PSO)中线性递减的惯性权重极易导致算法陷入局部极值的不足,提出一种改进的粒子群算法(Improved PSO),该算法利用三角函数的相关性质改进惯性权重(w)随时间的动态变化模式,以使惯性权重值在算法的初期保持较大取值,然后逐渐递减而在算法的末期保持较小取值,从而提高粒子群算法的全局搜索能力,增强算法的收敛性能。编制基于改进粒子群算法的重力坝断面优化设计计算程序,对某水利枢纽工程的非溢流重力坝断面进行优化计算分析,并与遗传算法和标准粒子群算法的计算结果进行比较。【结果】采用改进粒子群算法得到的非溢流重力坝的最优断面面积为5 147.3 m~2,而采用标准粒子群算法(SPSO)得到的非溢流重力坝的最优断面面积为5 416.5m~2,前者较后者减小9.45%,极大地提高了经济性;采用改进的粒子群算法得到最优解需要计算15步,而采用标准粒子群算法得到最优解需要计算22步,粒子群算法收敛速度提高了31.8%。通过2种算法计算结果的对比,表明改进的粒子群算法不仅能得到更好的优化结果,而且保持了较快的收敛速度。【结论】改进粒子群算法可以用于大型水利工程结构的优化计算与设计。
[Abstract]:[objective] to apply the improved particle swarm optimization algorithm to the optimization calculation of gravity dam section. [methods] aiming at the linear decreasing inertia weight in traditional particle swarm optimization algorithm (PSO), it is easy for the algorithm to fall into the deficiency of local extremum. An improved particle swarm optimization (PSO) algorithm is proposed in this paper. The improved PSO algorithm uses the properties of trigonometric function to improve the dynamic mode of inertia weight with time, so that the inertial weight can keep a large value in the initial stage of the algorithm. Then decreasing gradually and keeping a small value at the end of the algorithm, so as to improve the global search ability of PSO and enhance the convergence performance of PSO. A program for optimal design of gravity dam section based on improved PSO is developed. The section of a non-overflow gravity dam in a water conservancy project is optimized and analyzed. The results are compared with those of genetic algorithm and standard particle swarm optimization algorithm. [results] the optimum cross section area of non-overflow gravity dam obtained by improved particle swarm optimization is 5 147.3 mm2, while that obtained by standard particle swarm optimization algorithm (SPSO) is obtained by using standard particle swarm optimization (SPSO). The optimum cross-section area of non-overflow gravity dam is 5 416.5 mm2, the former decreases 9.45% than the latter, and the economy is greatly improved. Using the improved particle swarm optimization algorithm to get the optimal solution requires 15 steps, while using the standard particle swarm optimization algorithm to get the optimal solution requires 22 steps. The convergence speed of the particle swarm optimization algorithm is improved by 31.8. the comparison of the results of the two algorithms is made. It is shown that the improved particle swarm optimization algorithm can not only obtain better optimization results, but also maintain a faster convergence rate. [conclusion] the improved particle swarm optimization algorithm can be applied to the optimization calculation and design of large water conservancy structures.
【作者单位】: 西安理工大学水利水电工程学院;国网新疆电力公司阿克苏供电公司;
【基金】:国家自然科学基金项目(51409207,51309190) 中央财政支持地方高校发展专项(106-5X1205) 陕西省重点学科建设专项(106-00X903)
【分类号】:TV642.3;TP18
【相似文献】
相关期刊论文 前10条
1 全芙蓉;;粒子群算法的理论分析与研究[J];硅谷;2010年23期
2 吴军;李为吉;;改进的粒子群算法及在结构优化中的应用[J];陕西理工学院学报(自然科学版);2006年04期
3 段海涛;刘永忠;冯霄;;水系统优化的粒子群算法分析[J];华北电力大学学报(自然科学版);2007年02期
4 王伟;;混合粒子群算法及其优化效率评价[J];中国水运(学术版);2007年06期
5 付宜利;封海波;孙建勋;李荣;马玉林;;机电产品管路自动敷设的粒子群算法[J];机械工程学报;2007年11期
6 蒋荣华;王厚军;龙兵;;基于离散粒子群算法的测试选择[J];电子测量与仪器学报;2008年02期
7 周苗;陈义保;刘加光;;一种新的协同多目标粒子群算法[J];山东理工大学学报(自然科学版);2008年05期
8 姚峰;杨卫东;张明;;改进粒子群算法及其在热连轧负荷分配中的应用[J];北京科技大学学报;2009年08期
9 张大兴;贾建援;张爱梅;郭永献;;基于粒子群算法的三轴跟瞄装置跟踪策略研究[J];仪器仪表学报;2009年09期
10 王丽萍;江波;邱飞岳;;基于决策偏好的多目标粒子群算法及其应用[J];计算机集成制造系统;2010年01期
相关会议论文 前10条
1 朱童;李小凡;鲁明文;;位置加权的改进粒子群算法[A];中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(上)[C];2012年
2 陈定;何炳发;;一种新的二进制粒子群算法在稀疏阵列综合中的应用[A];2009年全国天线年会论文集(上)[C];2009年
3 陈龙祥;蔡国平;;基于粒子群算法的时滞动力学系统的时滞辨识[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年
4 于颖;李永生;於孝春;;新型离散粒子群算法在波纹管优化设计中的应用[A];第十一届全国膨胀节学术会议膨胀节设计、制造和应用技术论文选集[C];2010年
5 刘卓倩;顾幸生;;一种基于信息熵的改进粒子群算法[A];系统仿真技术及其应用(第7卷)——'2005系统仿真技术及其应用学术交流会论文选编[C];2005年
6 熊伟丽;徐保国;;粒子群算法在支持向量机参数选择优化中的应用研究[A];2007中国控制与决策学术年会论文集[C];2007年
7 方卫华;徐兰玉;陈允平;;改进粒子群算法在大坝力学参数分区反演中的应用[A];2012年中国水力发电工程学会大坝安全监测专委会年会暨学术交流会论文集[C];2012年
8 熊伟丽;徐保国;;单个粒子收敛中心随机摄动的粒子群算法[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
9 马向阳;陈琦;;以粒子群算法求解买卖双方存货主从对策[A];第十二届中国管理科学学术年会论文集[C];2010年
10 赵磊;;基于粒子群算法求解多目标函数优化问题[A];第二十一届中国(天津)’2007IT、网络、信息技术、电子、仪器仪表创新学术会议论文集[C];2007年
相关博士学位论文 前10条
1 王芳;粒子群算法的研究[D];西南大学;2006年
2 安镇宙;家庭粒子群算法及其奇偶性与收敛性分析[D];云南大学;2012年
3 刘建华;粒子群算法的基本理论及其改进研究[D];中南大学;2009年
4 黄平;粒子群算法改进及其在电力系统的应用[D];华南理工大学;2012年
5 胡成玉;面向动态环境的粒子群算法研究[D];华中科技大学;2010年
6 张静;基于混合离散粒子群算法的柔性作业车间调度问题研究[D];浙江工业大学;2014年
7 张宝;粒子群算法及其在卫星舱布局中的应用研究[D];大连理工大学;2007年
8 刘宏达;粒子群算法的研究及其在船舶工程中的应用[D];哈尔滨工程大学;2008年
9 杨轻云;约束满足问题与调度问题中离散粒子群算法研究[D];吉林大学;2006年
10 冯琳;改进多目标粒子群算法的研究及其在电弧炉供电曲线优化中的应用[D];东北大学;2013年
相关硕士学位论文 前10条
1 张忠伟;结构优化中粒子群算法的研究与应用[D];大连理工大学;2009年
2 李强;基于改进粒子群算法的艾萨炉配料优化[D];昆明理工大学;2015年
3 付晓艳;基于粒子群算法的自调节隶属函数模糊控制器设计[D];河北联合大学;2014年
4 余汉森;粒子群算法的自适应变异研究[D];南京信息工程大学;2015年
5 梁计锋;基于改进粒子群算法的交通控制算法研究[D];长安大学;2015年
6 杨伟;基于粒子群算法的氧乐果合成过程建模研究[D];郑州大学;2015年
7 李程;基于粒子群算法的AS/RS优化调度方法研究[D];陕西科技大学;2015年
8 樊伟健;基于混合混沌粒子群算法求解变循环发动机数学模型问题[D];山东大学;2015年
9 陈百霞;考虑风电场并网的电力系统无功优化[D];山东大学;2015年
10 戴玉倩;基于混合动态粒子群算法的软件测试数据自动生成研究[D];江西理工大学;2015年
,本文编号:1510962
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1510962.html