基于NetLinx网络架构的污水回用控制系统设计与实现
发布时间:2018-02-20 23:52
本文关键词: 智能控制算法 集散控制 NetLinx网络 Intouch组态软件 硬件组态 出处:《沈阳工业大学》2017年硕士论文 论文类型:学位论文
【摘要】:污水回用是关系到国计民生的大事,也是实现我国可持续发展战略的重要举措。为了减少污水回用成本,提高出水水质,必须采用先进的污水回用控制技术,提高污水回用的处理规模和控制系统的全自动化及智能化。大中型污水回用系统的设备分布比较分散且控制难度较高,目前实际应用的控制系统都有一定的缺陷。而且污水回用处理是一个纯滞后、非线性、动态不稳定的复杂系统,很难建立精准的数学模型,因而影响整个系统的控制效果,为此本文从污水回用的控制系统设计和智能控制算法两个方面进行研究。本文针对实际的污水回用工程,分析了污水回用处理的工艺及系统需求,并提出了控制系统的设计方案。根据控制系统方案,设计了基于NetLinx网络架构的罗克韦尔PLC集散控制系统,并分别对现场层的设备控制子系统,控制层的PLC软硬件和信息层的上位机硬件及监控界面进行了设计。采用Intouch组态软件设计上位机监控界面,通过NetLinx网络与下位机和现场检测仪表及设备实现数据交换与过程控制。在以太网(EtherNet/IP)、控制网(ControlNet)和设备网(DeviceNet)构成的NetLinx网络架构下,通过硬件组态与软件编程构建集自动化、智能化、信息化于一体的先进控制系统以满足污水回用处理控制系统的控制需求。污水回用处理过程中的pH值是系统的一个重要运行参数,不仅受温度、季节、流量和进水pH值等因素的影响,而且pH值的中和反应还具有极度非线性的特性,使用常规的控制方法难以取得令人满意的控制精度。针对pH值的控制,本文提出基于BP神经网络辨识的多神经元自整定PID智能控制算法对污水回用系统中需实时监测的pH值进行控制,通过Matlab进行仿真,该算法使用训练好的BP神经网络完成参数的在线调整,不仅具有BP神经网络的辨识和自适应能力,又具有常规PID的控制优势,使系统pH值的控制具有良好的动、静态性能。该项目通过现场调试,已投入正常运行,运行效果良好,系统稳定、自动化、信息化程度高、出水水质良好,达到了预期的控制目标。该项目的设计与调试运行为其他污水回用控制系统的设计与运行提供了一定的经验,可广泛应用于目前各种污水回用处理控制系统。
[Abstract]:Sewage reuse is an important matter related to the national economy and people's livelihood, and also an important measure to realize the sustainable development strategy of our country. In order to reduce the cost of wastewater reuse and improve the quality of effluent, advanced wastewater reuse control technology must be adopted. The treatment scale of sewage reuse and the automation and intelligence of the control system are improved. The equipment distribution of the large and medium-sized sewage reuse system is scattered and the control difficulty is high. At present, the actual control system has some defects. Moreover, the wastewater reuse treatment is a complex system with pure lag, nonlinear and dynamic instability, it is difficult to establish accurate mathematical model, thus affecting the control effect of the whole system. In this paper, the design of sewage reuse control system and the intelligent control algorithm are studied. In this paper, the process and system requirements of wastewater reuse treatment are analyzed in view of the actual sewage reuse project. According to the control system scheme, the Rockwell PLC distributed control system based on NetLinx network architecture is designed. The PLC hardware and software of the control layer and the upper computer hardware and monitor interface of the information layer are designed, and the monitoring interface of the upper computer is designed by using the Intouch configuration software. Data exchange and process control are realized through NetLinx network, lower computer, field detection instrument and equipment. Under the NetLinx network architecture composed of Ethernet Ethernet Ethernet / IP net (Control net) and device Network (DeviceNet), set automation and intelligence are constructed by hardware configuration and software programming. The advanced control system is integrated with information to meet the control requirements of the wastewater reuse control system. The pH value in the process of wastewater reuse treatment is an important operating parameter of the system, which is not only subject to temperature and season, The influence of the factors such as flow rate and influent pH value, and the neutralization reaction of pH value are extremely nonlinear, so it is difficult to obtain satisfactory control precision by using conventional control methods. In this paper, a multi-neuron self-tuning PID intelligent control algorithm based on BP neural network identification is proposed to control the pH value of wastewater reuse system, which needs to be monitored in real time. The simulation is carried out by Matlab. The algorithm uses trained BP neural network to adjust parameters online, which not only has the ability of BP neural network identification and adaptation, but also has the control advantage of conventional PID, which makes the control of system pH have good movement. Static performance. The project has been put into normal operation through field debugging, running effect is good, the system is stable, automation, information level is high, the effluent quality is good, The design and commissioning of the project provide some experience for the design and operation of other sewage reuse control systems and can be widely used in various sewage reuse control systems.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273
【参考文献】
相关期刊论文 前10条
1 韩改堂;乔俊飞;韩红桂;;基于自适应递归模糊神经网络的污水处理控制[J];控制理论与应用;2016年09期
2 陈宗Y,
本文编号:1520392
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1520392.html