机器人的端口受控哈密顿与自适应协调控制
本文关键词: 永磁同步电机 自适应控制 端口受控哈密顿 干扰观测器 出处:《青岛大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着社会经济发展和机电、电力电子、人工智能等相关理论以及各种控制策略的日益完善,机器人技术已逐渐成熟,并在众多领域取得较为广泛的应用,发挥着不可或缺的作用。相应的,其控制系统的研究显得日益重要。作为一个高阶复杂系统,机器人实际运行过程中不可避免地会受到内部不确定性参数和外部扰动等因素的影响。如何最大程度地减小这些因素对系统的影响与干扰,成为机器人控制策略的研究重点。传统的机器人控制方案往往不考虑关节驱动电机,仅仅从其动力学角度出发,建立其模型。在此基础上进行控制器设计,虽然理论上可以取得较好的效果,但在实际运行中却是差强人意,具有很大的局限性。基于此本课题统筹机器人动力学与驱动电机,永磁同步电机(PMSM)作为机器人驱动电机,在修正模型的基础上给出了控制器的设计过程与方法。第一,首先介绍了本课题的研究目的和意义,并简单阐述了机器人控制的国内外研究现状与趋势。第二,统筹机器人动力学模型与关节驱动电机PMSM的数学模型,建立了新的机器人模型。第三,主要研究了机器人的端口受控哈密顿与自适应协调控制。分别设计求取了端口受控哈密顿控制器与自适应控制器,仿真结果表明,采用该方案后系统跟踪信号的快速性良好,同时也具有较好的稳态性能,初步证实了协调控制策略的可行性。第四,考虑到自适应控制自身的局限性,即对机器人非内部不确定性因素控制不理想。本文在已有方案的基础上设计了干扰观测器,兼顾了改善机器人参数不确定性和外部扰动等缺点。仿真结果表明,加入干扰观测器的机器人系统在自适应与PCHD协调控制下具有较高的动态性能与稳态性能,抗干扰能力强,预期效果良好。综上所述,为最大程度减小内外部因素对机器人系统的影响与干扰,获得较好的动态稳态性能,本文以机器人为研究对象,给出了端口受控哈密顿与自适应协调控制方案,并在此基础上设计了干扰观测器进行仿真验证,获得了较好的预期效果。
[Abstract]:With the development of social economy and the improvement of related theories such as electromechanical, power electronics, artificial intelligence and various control strategies, robot technology has gradually matured, and has been widely used in many fields. Play an indispensable role. Accordingly, the study of its control system becomes increasingly important. As a high-order complex system, The robot will inevitably be affected by internal uncertain parameters and external disturbances during the actual operation. How to minimize the impact and interference of these factors on the system, and how to minimize the impact of these factors on the system, and how to minimize the impact of these factors on the system. The traditional robot control scheme often does not consider the joint drive motor, and only builds its model from the angle of its dynamics. On the basis of this, the controller is designed. Although good results can be achieved in theory, it is unsatisfactory in practical operation and has great limitations. Based on this topic, PMSM (permanent Magnet synchronous Motor) is used as the driving motor of robot, and PMSM (permanent Magnet synchronous Motor) is used as the driving motor of robot. On the basis of the modified model, the design process and method of the controller are given. Firstly, the purpose and significance of the research are introduced, and the research status and trend of robot control at home and abroad are briefly described. A new robot model is established by combining the dynamics model of robot with the mathematical model of joint driven motor (PMSM). Third, The port controlled Hamiltonian and adaptive coordinated control of the robot are studied, and the port controlled Hamiltonian controller and the adaptive controller are designed, respectively. The simulation results show that the system tracking signal is fast enough after adopting this scheme. At the same time, it has good steady-state performance, which preliminarily proves the feasibility of coordinated control strategy. 4th, considering the limitations of adaptive control, In this paper, the disturbance observer is designed on the basis of the existing scheme, which takes into account the shortcomings of improving the uncertainty of the robot parameters and the external disturbance. The simulation results show that, The robot system with disturbance observer has high dynamic and steady-state performance under adaptive and PCHD coordinated control, strong anti-jamming ability and good expected effect. In order to minimize the influence and interference of internal and external factors on the robot system and obtain better dynamic steady-state performance, a port controlled Hamiltonian and adaptive coordinated control scheme is presented in this paper. On this basis, the disturbance observer is designed and verified by simulation, and the expected results are obtained.
【学位授予单位】:青岛大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 孙怡宁;;浅谈人工智能与机器人的发展趋势[J];电子测试;2016年23期
2 符晓玲;刘旭东;;基于自适应反步法和端口受控哈密顿理论的永磁同步电机控制[J];电机与控制应用;2016年10期
3 刘应新;于海生;;机器人的端口受控哈密顿与自适应混合控制[J];青岛大学学报(工程技术版);2016年03期
4 谭传接;杨向宇;赵世伟;;基于无源性的无刷直流电动机速度控制[J];微特电机;2016年08期
5 解洪超;于海生;;永磁同步电动机的哈密顿控制与DSP实现[J];微特电机;2016年05期
6 于潇雁;陈力;;漂浮基柔性两杆空间机械臂基于状态观测器的鲁棒控制及振动控制[J];机械工程学报;2016年15期
7 王艳;于海生;于金鹏;;永磁同步电机速度的滑模与哈密顿协调控制研究[J];青岛大学学报(工程技术版);2016年01期
8 黄肇;罗隆福;王晓芳;;永磁同步电机的端口受控哈密顿控制[J];电源技术;2016年03期
9 吴忠强;吴昌韩;贾文静;赵立儒;;基于能量函数的永磁同步电机无速度传感器H_∞控制[J];中国机械工程;2016年05期
10 ;2016年,五大机器人的发展趋势[J];机床与液压;2016年02期
相关博士学位论文 前1条
1 于海生;交流电机的能量成型与非线性控制研究[D];山东大学;2006年
相关硕士学位论文 前3条
1 彭诗友;几类时变时滞神经网络的无源性分析[D];广东工业大学;2016年
2 王国安;机器人PID控制技术的研究[D];东北大学;2008年
3 潘剑;基于滑模变结构控制的永磁同步电机伺服系统[D];浙江大学;2008年
,本文编号:1532560
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1532560.html