大功率机电静压伺服系统控制策略研究
本文关键词: 机电静压 控制策略 伺服电机泵 非线性PID 前馈补偿 并联 出处:《中国航天科技集团公司第一研究院》2017年硕士论文 论文类型:学位论文
【摘要】:机电静压伺服机构(Electro-Hydrostatic Actuator,EHA)具有机电伺服机构(Electro-Mechanical Actuator,EMA)结构简单、效率高和传统电液伺服机构(Electro-Hydraulic Actuator,EH)重载能力强的双重优点,是未来运载火箭大推力摇摆发动机推力矢量控制的优选技术方案。但对于较大功率的产品而言,其动态能力是关注重点,单一的PID控制算法能力也有限。大功率EHA势必采用大功率的伺服电机和液压泵(或者一体化设计的“伺服电机泵”),其转动惯量较大,动态能力也有限。提出了“非线性PID+前馈补偿+陷波补偿”的控制算法。非线性PID克服了传统PID快速性与准确性难以兼顾的困难;前馈补偿有效改善了中低频段相位滞后;陷波补偿抑制负载谐振。同时,针对大功率EHA的高动态需求,提出双伺服电机泵并联控制的设计方案,一个泵功率较大,但要实现高动态较难,采用两个泵时单个泵功率可以较小,动态性能易保证。设计制造了双伺服电机泵并联控制的机电静压伺服机构试验样机。搭建了试验系统,采用某运载火箭1000kg·m~2转动惯量的模拟负载台,采用商用驱动器实现对伺服电机速度闭环控制,采用数字信号处理器(DSP)实现机构位置闭环运算。进行了仿真分析和试验研究。表明,与“比例+陷波补偿”的基本算法相比,采用“非线性PID+前馈补偿+陷波补偿”算法,-45°相频宽由18.5rad/s提高至22.7rad/s;与单泵相比,双泵时可实现更加优良的控制性能,在0.1°、0.2°、0.3°、0.4°指令条件下,-45°相频宽分别由24.9rad/s、22.7rad/s、21.3rad/s、20.4rad/s提高至26rad/s、22.8rad/s、23.8rad/s、24.6rad/s。本课题研究表明,结合“非线性PID+前馈补偿+陷波补偿”和双伺服电机泵并联的控制策略,大功率EHA的动态性能可满足未来运载火箭的需求。
[Abstract]:Electro-Hydrostatic Actuator (EHA) has the advantages of simple structure, high efficiency and high load capacity of Electro-Hydraulic Actuator (EH). Is an optimal selection scheme for thrust vector control of large thrust rocking engines for future launch vehicles. But for high-power products, its dynamic capability is the focus of attention. The single PID control algorithm is also limited. High power EHA is bound to use high power servo motor and hydraulic pump (or integrated design of "servo motor pump"), its moment of inertia is large. The control algorithm of "nonlinear PID feedforward compensation notch compensation" is proposed. The nonlinear PID overcomes the difficulty of combining the speed and accuracy of traditional PID, and feedforward compensation can effectively improve the phase lag in medium and low frequency bands. At the same time, aiming at the high dynamic demand of high power EHA, the design scheme of parallel control of double servo motor pump is put forward. The power of one pump is large, but it is difficult to realize high dynamic state. When two pumps are used, the power of a single pump can be reduced and the dynamic performance can be guaranteed easily. A test prototype of electromechanical static servo mechanism controlled in parallel by double servomotor pump is designed and manufactured. The test system is set up. The simulation load table with 1000kg 路mm2 moment of inertia of a certain carrier rocket, the closed loop control of servo motor speed by commercial driver and the closed loop operation of mechanism position by digital signal processor (DSP) are realized. The simulation analysis and experimental study are carried out, and the results show that, Compared with the basic algorithm of "proportional notch compensation", the "nonlinear PID feedforward compensation notch compensation" algorithm is used to increase the phase width from 18.5RPS to 22.7Ra / s. Compared with the single pump, the dual pump can achieve better control performance. Under the command of 0.1 掳/ 0.2 掳/ 0.3 掳/ 0.4 掳respectively, the phase frequency width of -45 掳is increased from 24.9 rads to 22.7 RPS 21.3 rads to 26RDS 22.8 rads / s 23.8radP / s 24.6radrs.This study shows that the control strategy is based on "nonlinear PID feedforward compensation notch compensation" and double-motor servo pump parallel connection, and the results are as follows: (1) in this paper, the nonlinear PID feedforward compensation notch compensation and the parallel control strategy of the double-motor servo pump are presented. The dynamic performance of high power EHA can meet the needs of future launch vehicles.
【学位授予单位】:中国航天科技集团公司第一研究院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:V433;TP273
【参考文献】
相关期刊论文 前10条
1 赵春;赵守军;何俊;陈鹏;曲颖;;双余度机电静压伺服机构的故障隔离与重构技术研究[J];载人航天;2015年03期
2 曾广商;赵守军;张晓莎;;我国载人运载火箭伺服机构技术发展分析[J];载人航天;2013年04期
3 张晓光;孙力;赵克;;基于负载转矩滑模观测的永磁同步电机滑模控制[J];中国电机工程学报;2012年03期
4 郑洪波;孙友松;;直驱式容积控制电液伺服系统及其发展现状[J];机床与液压;2011年02期
5 高殿荣;刘金慧;温茂森;;轴向柱塞液压电机泵内部流场的分析[J];燕山大学学报;2010年06期
6 刘庆和;;新型高效电动静压飞行模拟器运动系统[J];机床与液压;2010年02期
7 曲永印;赵希梅;郭庆鼎;张志锋;;永磁同步电动机伺服系统自校正零相位误差跟踪控制[J];电工技术学报;2008年01期
8 郭宏;邢伟;;机电作动系统发展[J];航空学报;2007年03期
9 齐海涛;付永领;;基于AMESim的电动静液作动器的仿真分析[J];机床与液压;2007年03期
10 李军,付永领,王占林;机载电静液作动系统的发展现状与关键技术研究[J];航空制造技术;2005年11期
相关博士学位论文 前1条
1 苏文海;直驱式电液伺服转叶舵机关键技术及其控制系统研究[D];哈尔滨工业大学;2009年
相关硕士学位论文 前3条
1 赵进宝;火箭舵机转速排量复合调节电动静液作动器设计与研究[D];哈尔滨工业大学;2014年
2 万二平;直驱式电液传动系统伺服控制研究[D];重庆大学;2013年
3 杨合;数控伺服系统摩擦前馈与命令前馈补偿研究[D];哈尔滨工业大学;2008年
,本文编号:1548782
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1548782.html