可重构机器人操作柔性负载建模及振动抑制研究
发布时间:2018-03-06 09:15
本文选题:可重构机器人 切入点:柔性负载 出处:《天津理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:在现代制造业中,机器人技术的使用变得非常广泛,并且对制造业自动化程度的要求也越来越高,因此对机器人的工作方式及适应能力有更高的要求。传统机器人是基于某一相同或相近的任务而设计的且构型固定的机器人,灵活性较差。为了改善传统机器人的弊端,可重构机器人进而产生和发展。在汽车制造业和航空航天等领域内,一些柔性的轻薄板件或者细长杆件需要由机器人来完成抓取、夹持定位及装配。在机器人运动过程中由于惯性和自重等的原因,柔性负载不可避免的会产生振动,降低了机器人操作负载的末端定位精度。由可重构机器人结构参数等引起的静态误差和运动过程中各连杆惯性等作用下的动态误差均会对机器人末端精度造成影响。影响可重构机器人末端位姿精度的静态误差是指由于各模块在制造及重构装配过程中产生的几何偏差;由于可重构机器人的各关节和连杆不是完全的刚性体,动态误差是指在其运动过程中由于惯性及重力等作用下,机器人各连杆会产生一定的柔性变形,从而引起机器人末端位姿的偏差。因此,本文分析了静态和动态误差对机器人末端位置的影响。为了研究可重构机器人操作柔性负载的振动,本文首先利用拉格朗日方程建立机器人动力学模型,而后结合变形旋量和有限元法分析了柔性负载的变形,得到了柔性负载上任一点相对固定坐标系的位姿关系,再基于拉格朗日建立柔性负载的动力学方程;最后通过机器人与柔性负载之间的作用关系,建立系统的动力学模型。针对机器人在操作柔性负载运动过程中的振动问题,本文使用了基于基函数叠加与粒子群优化相结合的振动抑制规划方法,使用基函数叠加规划关节角速度,将叠加函数的参数作为待优化参数,通过机器人操作柔性负载系统动力学模型确定模态坐标与关节运动之间的关系以及模态坐标与末端变形的关系,从而将振动抑制问题转换为关节角速度参数优化问题,并利用粒子群算法完成整个优化过程。
[Abstract]:In the modern manufacturing industry, the use of robot technology has become very widespread, and the degree of automation of manufacturing industry is becoming more and more demanding. Therefore, there are higher demands on the working mode and adaptability of the robot. The traditional robot is designed based on the same or similar task and has a fixed configuration, which is not flexible. In order to improve the disadvantages of the traditional robot, In the fields of automobile manufacturing, aerospace, and so on, some flexible thin and thin panels or slender rods need to be grabbed by the robot. Clamping positioning and assembly. Due to inertia and deadweight during robot movement, flexible load will inevitably produce vibration. The static error caused by the structural parameters of the reconfigurable robot and the dynamic error caused by the inertia of each connecting rod in the course of movement will all have an effect on the terminal accuracy of the robot. The static error that affects the precision of the reconfigurable robot end position and pose refers to the geometric deviation caused by each module in the process of manufacturing and reconstructing assembly. Since the joints and connecting rods of the reconfigurable robot are not completely rigid bodies, the dynamic error is that due to the action of inertia and gravity, each linkage of the reconfigurable robot will produce certain flexible deformation. Therefore, the effect of static and dynamic errors on the end position of the robot is analyzed. In order to study the vibration of the flexible load of the reconfigurable robot, In this paper, the dynamic model of the robot is established by Lagrangian equation, then the deformation of the flexible load is analyzed by combining the deformation spinor and the finite element method, and the position and pose relation of any point on the flexible load in a relative fixed coordinate system is obtained. Then the dynamic equation of flexible load is established based on Lagrange. Finally, the dynamic model of the system is established through the relationship between the robot and the flexible load. In this paper, the vibration suppression programming method based on the combination of basis function superposition and particle swarm optimization is used. The parameters of the superposition function are taken as the parameters to be optimized by using the basis function superposition to plan the joint angular velocity. The relationship between modal coordinates and joint motion and the relationship between modal coordinates and terminal deformation are determined by the dynamic model of robot operating flexible load system, and the problem of vibration suppression is transformed into the optimization problem of joint angular velocity parameters. Particle swarm optimization algorithm is used to complete the whole optimization process.
【学位授予单位】:天津理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【相似文献】
相关期刊论文 前10条
1 宗光华;毕树生;王巍;李大寨;;机器人技术开拓未来——2005年国际机器人展(日本)巡礼[J];机器人技术与应用;2006年01期
2 陈林;奚如如;王兴松;;套索驱动细长机器人的初步设计与试验[J];机电工程;2011年03期
3 谢芝馨;;苏联机器人技术述评[J];机械与电子;1989年04期
4 罗飞,,余达太;主动式控制──机器人抑振控制的有效方式[J];机器人;1995年04期
5 卢桂章;当前高技术发展的前沿——机器人技术[J];天津科技;1995年01期
6 苏陆;日本机器人技术与产品[J];全球科技经济w
本文编号:1574220
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1574220.html