电子产品外壳五轴磨抛设备开发研究
本文选题:电子产品外壳 切入点:五轴磨抛设备 出处:《吉林大学》2017年硕士论文
【摘要】:两个世纪以来,各种的电子产品得到了迅速发展,极大方便了人们的生活。近年来,我国的电子产品在全国外贸的进出口份额中占比很大,国内的消费电子市场也在不断扩展。电子产品产量大、更新换代迅速等特点对生产厂家提出了很高的要求。由于产品外壳质量直接影响产品的外观和触感,因此产品外壳的制造是生产厂家跟上市场潮流的关键环节。当前各厂商多使用金属薄壳作为电子产品的外壳,生产厂家将加工成型后的金属薄壳经过抛光打磨等表面处理后,再经过阳极氧化、喷砂等工艺处理即可得到大批量的合格产品。在上述处理过程中,只有抛光打磨处理对手工的依赖很大。手工磨抛会产生大量金属粉尘,严重恶化车间的生产环境,危害车间工人的身体健康,不利于安全生产。此外,手工磨抛的质量受工人经验影响极大,生产效率也较为低下,不利于大规模生产。针对上述问题,本文为一款指定的电子产品外壳开发了一套自动化五轴磨抛设备,设计了专门的自动夹持模块和磨抛工具系统,能够实现对产品的自动装夹和对磨抛压力大小的精确控制,有效提升加工效率和质量,满足加工要求。本文的主要研究内容包括:(1)根据加工产品的特点提出了磨抛加工的工艺要求,通过比较各类磨抛加工方法的优劣,选择了气动磨头和砂纸作为磨抛工具,提出了设备的整体结构方案,确定了整机的结构形式、自由度和磨抛工作方式,对各轴的驱动部件进行了选型计算与校核,对自动夹持模块和磨抛工具系统进行了结构设计,并对磨抛设备的关键部位进行了静力学仿真分析和振动模态分析,验证了结构设计的合理性。(2)通过对磨抛运动控制要求的分析,给出了加工控制方案,为设备设计了一套电气控制系统,对其进行了选型与构建。根据设备的运动链建立了设备的运动学模型,对加工过程进行了轨迹规划,通过运动学逆解求出各轴运动量,在此基础上给出了编制完整数控程序代码的后续处理方案。(3)对本设备的磨抛压力控制系统进行了硬件选型,介绍了气动伺服磨抛压力控制系统的原理,建立了相应的数学模型,判断了该系统的稳定性。采用PID控制方法作为磨抛压力的控制策略,整定了PID参数并给出了本系统PID参数的最佳组合。(4)对影响磨抛加工质量的因素进行了分析,通过一系列单因素实验探索了各影响因素对磨抛效果的影响。通过设计一组正交试验,了解了影响磨抛后工件表面粗糙度的主要因素,确定了一组最佳工艺参数,并进行了验证实验。实验表明磨抛后的样件能够满足本项目的要求。
[Abstract]:Over the past two centuries, all kinds of electronic products have developed rapidly and greatly facilitated people's lives. In recent years, China's electronic products account for a large proportion of the import and export share of China's foreign trade. The domestic consumer electronics market is also expanding. The characteristics of large output of electronic products and rapid replacement of electronic products put forward high requirements for manufacturers. The quality of the product shell directly affects the appearance and touch of the product. Therefore, the manufacture of the shell is the key link for the manufacturers to keep up with the market trend. At present, the manufacturers mostly use the metal thin shell as the shell of the electronic products. After the manufacturers have treated the machined metal thin shell after polishing and polishing, After anodic oxidation, sand blasting and other processes, a large number of qualified products can be obtained. In the above treatment, only the polishing and grinding processes rely heavily on handwork. Manual grinding and polishing will produce a large amount of metal dust. Seriously deteriorating the production environment of the workshop, endangering the health of the workers in the workshop and harming the safety of production. In addition, the quality of manual grinding and polishing is greatly affected by the workers' experience, and the production efficiency is relatively low. This paper develops a set of automatic five-axis grinding and polishing equipment for a specified electronic product shell, and designs a special automatic gripping module and grinding tool system. It can realize the automatic clamping of the product and the accurate control of the grinding and polishing pressure. It can effectively improve the processing efficiency and quality. The main research contents of this paper include: (1) according to the characteristics of the processed products, the technological requirements of grinding and polishing are put forward. By comparing the advantages and disadvantages of various grinding and polishing methods, pneumatic grinding heads and sandpaper are selected as polishing tools. The whole structure scheme of the equipment is put forward, the structure form, the degree of freedom and the working mode of grinding and polishing are determined, the driving parts of each axis are selected and calculated, and the automatic clamping module and grinding tool system are designed. The static simulation analysis and vibration modal analysis of the key parts of the grinding and polishing equipment are carried out. The rationality of the structure design is verified by the analysis of the requirements of the grinding and polishing motion control, and the machining control scheme is given. A set of electrical control system is designed for the equipment. According to the kinematic chain of the equipment, the kinematics model of the equipment is established, and the path planning of the machining process is carried out, and the motion quantities of each axis are obtained by inverse kinematics solution. On this basis, the following processing scheme of complete NC program code is given. The hardware selection of the grinding and polishing pressure control system of this equipment is carried out, the principle of pneumatic servo grinding and polishing pressure control system is introduced, and the corresponding mathematical model is established. The stability of the system is judged. The PID control method is used as the control strategy of grinding and polishing pressure. The PID parameters are adjusted and the best combination of PID parameters of the system is given. The factors affecting the quality of grinding and polishing are analyzed. Through a series of single factor experiments, the effects of various factors on grinding and polishing effect are explored. By designing a group of orthogonal experiments, the main factors affecting the surface roughness of workpiece after grinding are understood, and a group of optimum technological parameters are determined. The experimental results show that the polished samples can meet the requirements of the project.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN05;TP273;TG580.2
【相似文献】
相关期刊论文 前7条
1 谢中生;国内外硅片磨抛设备发展述评[J];电子工业专用设备;1998年04期
2 温故;切、磨、抛技术交流会在重庆召开[J];半导体技术;1980年05期
3 林少丹;傅高升;;基于工业机器人的自动磨抛系统柔性加工系统设计[J];成都信息工程学院学报;2012年05期
4 钟秉福;一种新的V形槽腐蚀方法[J];微电子学;1989年01期
5 张川;陈耀龙;陈晓燕;王平;;非球面等去除量磨抛加工中的变速运动模型[J];光电工程;2014年06期
6 姚英,蔡毅,欧明娣,梁宏林,,朱惜辰;磨抛工艺中HgCdTe晶片的表面损伤[J];红外技术;1994年05期
7 ;切磨抛工艺对双极LS制管的影响[J];半导体技术;1978年03期
相关会议论文 前2条
1 王浩程;张宏太;张德良;方新;;行星滚磨抛光磨料流态特征的数值模拟[A];全国生产工程第九届年会暨第四届青年科技工作者学术会议论文集(二)[C];2004年
2 余英良;王翠兰;;车磨抛合一的数控加工及抛磨循环程序的应用[A];2005年中国机械工程学会年会论文集[C];2005年
相关重要报纸文章 前3条
1 张丽红;石材地面“无缝磨抛与翻新技术”[N];中国矿业报;2002年
2 于茗仲 王维升;手扶式多功能石材磨抛加工机问世[N];中国机电日报;2000年
3 郑原驰 仲崇玉 本报记者 李林岩;探索点亮新生活[N];吉林日报;2013年
相关博士学位论文 前3条
1 霍文国;钛合金干式磨抛加工技术研究[D];南京航空航天大学;2010年
2 李大奇;叶片双面磨抛系统及路径规划研究[D];吉林大学;2011年
3 赵军;大构件焊缝磨抛机器人视觉测量技术的研究[D];吉林大学;2014年
相关硕士学位论文 前10条
1 于兴展;弹性磨具磨抛加工中磨抛参数与磨抛效果相关性的研究[D];西安建筑科技大学;2015年
2 刘睿平;采用弹性磨具对M300磨抛的微观接触参数模型研究[D];西安建筑科技大学;2015年
3 程小汉;多面数控磨抛机的设计与试验研究[D];厦门理工学院;2016年
4 袁强;整体叶盘磨抛/测量轨迹规划与工艺研究[D];吉林大学;2016年
5 高亚鹏;整体叶盘磨抛工具系统控制研究[D];吉林大学;2016年
6 付林;叶片复杂曲面磨抛加工路径规划算法研究[D];吉林大学;2016年
7 蔡得领;机器人砂带磨抛控制系统设计[D];华中科技大学;2014年
8 宋鹏飞;石材线条数控磨抛机的研究与设计[D];华中科技大学;2015年
9 杨龙;机器人砂带磨抛力建模及其在钛合金叶片加工中的应用[D];华中科技大学;2015年
10 赵永兵;混联叶片磨抛机床误差分析及实验研究[D];吉林大学;2017年
本文编号:1667100
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1667100.html