当前位置:主页 > 科技论文 > 自动化论文 >

融合时间特征的遥感影像分类

发布时间:2018-03-28 05:02

  本文选题:时间特征 切入点:影像分类 出处:《国土资源遥感》2017年01期


【摘要】:为了克服基于光谱纹理特征的影像分类法的不足,提出一种融合时间特征的遥感影像分类方法。以历史时期土地利用矢量图为辅助数据,对新时期遥感影像进行带约束的影像分割以获取像斑;采用迭代统计的方法计算新时期遥感影像的地物类别转移概率;利用地物类别转移概率表达时间特征,将其融入到像斑的后验概率中,构建顾及时间特征的像斑联合概率;依据后验概率最大原则获取影像分类结果。采用Quick Bird遥感影像进行的实验结果表明:与基于光谱纹理特征的分类方法相比,所提出的方法能够显著提高影像分类的精度,总体分类精度与kappa系数分别提高了9.8%和17.9%,验证了所提方法的可行性和可靠性。
[Abstract]:In order to overcome the shortcomings of image classification based on spectral texture features , a method of remote sensing image classification based on temporal feature is proposed . The probability of image classification is obtained by using the method of iterative statistics . The results show that the proposed method can significantly improve the accuracy of image classification , and the overall classification accuracy and kappa coefficient are improved by 9.8 % and 17.9 % , respectively , and the feasibility and reliability of the proposed method are verified .

【作者单位】: 四川省第三测绘工程院;国家测绘地理信息局重庆测绘院;
【基金】:测绘地理信息公益性行业科研专项项目“卫星遥感与地面传感网一体化的湖泊流域地理国情监测关键技术研究”(编号:201512026) 四川省地理国情监测工程技术研究中心项目“基于时序遥感影像的土地利用变化检测方法研究”(编号:GC201506) 四川省测绘地理信息局科技计划项目“基于Web的四川省地理国情监测数据成果展示方法与实现”(编号:J2014ZC16)共同资助
【分类号】:TP751

【相似文献】

相关期刊论文 前10条

1 黄恩兴;;遥感影像分类结果的不确定性研究[J];中国农学通报;2010年05期

2 贾坤;李强子;田亦陈;吴炳方;;遥感影像分类方法研究进展[J];光谱学与光谱分析;2011年10期

3 朱丹瑶;;遥感影像分类方法研究[J];黑龙江科技信息;2012年33期

4 孙立新,罗高平,张怡梅;遥感影像分类的归类学习方法[J];测绘工程;1998年03期

5 李爽,丁圣彦,许叔明;遥感影像分类方法比较研究[J];河南大学学报(自然科学版);2002年02期

6 黄艳;张超;苏伟;岳安志;;合理尺度纹理分析遥感影像分类方法研究[J];国土资源遥感;2008年04期

7 付博;谢振红;邓彩群;;改进的角度余弦方法在湿地遥感影像分类中的应用[J];吉林建筑工程学院学报;2010年04期

8 杨慧;郑思莉;唐赫;朱文谦;程战员;;面向对象的武汉市街区公共遥感影像分类研究[J];软件导刊;2014年01期

9 杨玉静;冯建辉;;纹理特征提取及辅助遥感影像分类技术研究[J];海洋测绘;2008年04期

10 李小涛;潘世兵;宋小宁;;基于地质统计学纹理特征的遥感影像分类方法研究[J];地理与地理信息科学;2009年02期

相关会议论文 前10条

1 刘忠阳;陈怀亮;杜子璇;邹春辉;;基于决策树方法的Landsat7 ETM+遥感影像分类研究[A];农业生态与卫星遥感应用技术学术交流会论文摘要集[C];2006年

2 王珊珊;季民;高洁;焦其松;;CBR方法在高分辨率遥感影像分类中的应用[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年

3 汤家法;;基于可拓分类器的遥感影像分类[A];第十七届中国遥感大会摘要集[C];2010年

4 巫兆聪;;RBF网络的粗糙表示与遥感影像分类应用[A];第十三届全国遥感技术学术交流会论文摘要集[C];2001年

5 杨剑;蒲英霞;何一鸣;;基于Getis的遥感影像分类研究[A];中国地理学会百年庆典学术论文摘要集[C];2009年

6 赵泉华;宋伟东;鲍勇;;基于分形纹理的BP神经网络遥感影像分类[A];中国仪器仪表学会第九届青年学术会议论文集[C];2007年

7 王梁;韩坤英;;分形理论在遥感影像分类中的应用[A];第十二届全国数学地质与地学信息学术研讨会论文集[C];2013年

8 汪东川;龚建华;张利辉;;基于时间序列轨迹分析的遥感影像分类结果联合校正[A];第十七届中国遥感大会摘要集[C];2010年

9 罗小波;刘明皓;;基于优化的BP神经网络遥感影像分类[A];2006年中国土地学会学术年会论文集[C];2006年

10 ;结合光谱、纹理与形状特征的高空间分辨率遥感影像分类(英文)[A];中国测绘学会第九次全国会员代表大会暨学会成立50周年纪念大会论文集[C];2009年

相关博士学位论文 前9条

1 王巍;基于Agent的遥感影像分类方法及其应用研究[D];中国地质大学(北京);2016年

2 任广波;基于半监督学习的遥感影像分类技术研究[D];中国海洋大学;2010年

3 谭琨;基于支持向量机的高光谱遥感影像分类研究[D];中国矿业大学;2010年

4 巫兆聪;粗集理论在遥感影像分类中的应用[D];武汉大学;2004年

5 易俐娜;面向对象遥感影像分类不确定性分析[D];武汉大学;2011年

6 胥海威;基于改进随机聚类决策森林算法的遥感影像分类研究[D];中南大学;2012年

7 徐盛;基于主题模型的高空间分辨率遥感影像分类研究[D];上海交通大学;2012年

8 刘志刚;支撑向量机在光谱遥感影像分类中的若干问题研究[D];武汉大学;2004年

9 丁胜;智能优化算法在高光谱遥感影像分类中的应用研究[D];武汉大学;2010年

相关硕士学位论文 前10条

1 吴聪;面向对象的高分辨率遥感影像分类在卫片执法中的应用研究[D];昆明理工大学;2015年

2 周杨;面向对象的高分辨率遥感影像分类技术研究[D];中国地质大学(北京);2015年

3 李奇峰;结合多特征描述和SVM的遥感影像分类研究[D];郑州大学;2015年

4 宋晓阳;面向对象的遥感分类系统研究[D];南京农业大学;2014年

5 张静;西北旱区遥感影像分类方法研究[D];西北农林科技大学;2016年

6 王慧;融合各最优尺度下特征的高分辨率遥感影像分类[D];南京信息工程大学;2016年

7 姚啸;面向对象的高分遥感影像分类在森林蓄积量估测中的应用研究[D];西安科技大学;2015年

8 麦超;基于稀疏约束受限玻尔兹曼机的高分辨率遥感影像分类[D];长安大学;2016年

9 崔姗姗;基于Hadoop平台下森林景观遥感影像分类技术研究[D];东北林业大学;2016年

10 陈珂;遥感影像分类结果的空间抽样精度检验方法研究[D];上海海洋大学;2016年



本文编号:1674844

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1674844.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7c97d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com