当前位置:主页 > 科技论文 > 自动化论文 >

可穿戴心电监护系统的终端软件设计与实现

发布时间:2018-03-30 22:01

  本文选题:心电监护 切入点:终端 出处:《杭州电子科技大学》2017年硕士论文


【摘要】:近30年以来,我国经济发展迅速,人民生活水平得到极大的改善并开始逐步进入小康阶段。随着生活富裕起来广大人民的生活节奏被加快,生活方式也与以往相差很大,其中包括生活规律、饮食规律、心理状态等,然而这些改变导致了我国心脏类疾病的患病率和死亡率迅速上升。在经济快速发展的同时我国人口结构逐渐趋于老龄化,老人作为心脏类疾病的高发人群则进一步提高了心脏类疾病的发病率。同时作为青壮年面对日益增强的工作负担与生活压力,因心脏猝死的概率也呈上升化趋势。以上这些都对人民的生命健康产生了极大的威胁,也让家人甚至整个社会承担着巨大的压力。心电信号作为人体生物电信号的一种,它包含了大量可以体现心血管健康状态的生理及病理信息,同时心电信号也能够及时反映人体心脏的健康状况。通过对心电信号的处理、分析能够提前发现心脏类疾病的发病征兆,对心脏类疾病的防治及预防突发性心脏猝死具有积极意义。为了能够高效、快速的采集、分析心电信号,本文在基于可穿戴心电监护系统这一实验室课题的基础上,开发了该系统的终端软件部分并对采集到终端设备上的心电数据进行深入分析与研究。相较于一般心电监护系统的终端设计,本文开发的终端软件进行了大量的创新性优化与扩展,心电终端包括PC端心电软件与移动端心电APP,通过两者相结合的方式增加了系统适用于不同使用环境的可能性。PC端软件采用具有优良跨平台特性的Qt应用架构进行编写,主要负责心电信息的接收、存储和分析。移动端心电APP在PC端软件的功能基础上结合自身强大的社交特性,增加了数据的第三方分享功能。在数据分析模块,本文首先对心电信号的消噪算法进行研究,在此基础上应用曲线的波峰波谷查找算法对心电波形的QRS波进行识别提取。最后将生物科学、计算机科学及其他知识进行结合,完成心电终端的心电图显示及心电的自动化诊断、智能化分析目标。测试结果表明,本文研究的心电终端系统能够有效的接收心电数据,并进行数据分析,实现了心电终端智能化目标。最终为用户提供了合理的、具有针对性的健康生活提议。目前,该套系统已经完成初步的测试,相信在一些细节被不断的优化后,系统将很快能够投入使用,实现最终的产品化目标并带来一定的社会及经济效益。
[Abstract]:In the past 30 years, China's economy has developed rapidly, the people's living standards have been greatly improved, and they have gradually entered the stage of well-off life. With the prosperity of life, the pace of life of the vast number of people has been accelerated, and the way of life is also very different from the past. These changes, however, have led to a rapid rise in the prevalence and mortality of heart diseases in China. With the rapid development of the economy, the population structure of our country is gradually aging. The elderly, as a high risk group of heart diseases, have further increased the incidence of heart diseases. As young adults, they are faced with increasing burden of work and pressure of life. The probability of sudden cardiac death is also on the rise. All of these have posed a great threat to the life and health of the people, and caused great pressure on the family and even the whole society. The ECG signal is one of the bioelectrical signals of the human body. It contains a large number of physiological and pathological information that can reflect the state of cardiovascular health, and ECG signals can also reflect the health of the human heart in time. Analysis can detect the symptoms of heart disease in advance, and has positive significance for the prevention and treatment of heart disease and the prevention of sudden cardiac sudden death. This paper is based on the wearable ECG monitoring system, which is a laboratory project. The terminal software of the system is developed, and the ECG data collected on the terminal equipment are analyzed and studied in depth. The terminal software developed in this paper is innovatively optimized and extended. ECG terminal includes PC end ECG software and mobile terminal ECG app. By combining the two methods, it increases the possibility that the system is suitable for different use environments. PC terminal software is written with QT application architecture with excellent cross-platform characteristics. Mainly responsible for receiving, storing and analyzing ECG information. Mobile ECG APP combines its powerful social characteristics with the function of PC software, and increases the function of data sharing by third party. In this paper, the de-noising algorithm of ECG signal is studied firstly, and then the QRS wave of ECG waveform is identified and extracted by using the algorithm of finding the peak and trough of the curve. Finally, the biological science, computer science and other knowledge are combined. The ECG display of ECG terminal and the automatic diagnosis of ECG are completed. The test results show that the ECG terminal system studied in this paper can receive and analyze the ECG data effectively. It has achieved the goal of intelligent ECG terminal. Finally, it has provided users with reasonable and targeted healthy life proposals. At present, the system has completed preliminary tests, and it is believed that after some details have been continuously optimized, The system will soon be put into use to achieve the final goal of production and bring certain social and economic benefits.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.52;TP274

【参考文献】

相关期刊论文 前10条

1 陈伟伟;邢辰;;中国心血管病报告2015[J];中华医学信息导报;2016年12期

2 李开菊;郑波尽;;浅谈深度学习[J];软件;2016年05期

3 潘俊兰;;我国“看病难、看病贵”问题的根源探析[J];农村经济与科技;2016年08期

4 金荣华;陈琪锋;谢传芳;;有关移动互联网终端技术的浅议[J];电子技术与软件工程;2016年04期

5 王琼;;差异化部局加快国产移动智能终端操作系统的发展[J];世界电信;2015年11期

6 姚文坡;毛靖宁;刘铁兵;;心电图机检定中的工频干扰及抑制方法[J];医疗卫生装备;2015年05期

7 Yan-yan SONG;Ying LU;;用于分类与预测的决策树分析(英文)[J];上海精神医学;2015年02期

8 金林鹏;董军;;面向临床心电图分析的深层学习算法[J];中国科学:信息科学;2015年03期

9 金繁;崔培雷;;嵌入式Qt中信号与槽机制的研究[J];电子设计工程;2014年24期

10 刘胜洋;张根选;曹阳;;心电信号中的工频干扰滤除方法[J];生物医学工程学杂志;2014年03期

相关博士学位论文 前1条

1 董红生;心电波形检测与心率变异性分析方法研究[D];兰州理工大学;2012年

相关硕士学位论文 前5条

1 李霞;Android虚拟机运行时技术的分析与评测[D];东南大学;2015年

2 石涛;基于Android系统智能手机的心电远程监护系统软件设计[D];北京工业大学;2013年

3 汪志锋;保险专业中介机构及高管人员信息管理系统的设计与实现[D];北京邮电大学;2011年

4 龚敏;基于小波变换的心电检测及自诊断系统的设计[D];重庆大学;2009年

5 李兆良;老年人生活满意度与心血管疾病的关系研究[D];吉林大学;2004年



本文编号:1687816

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1687816.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户538f1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com