活体干细胞生物光子检测系统研究
发布时间:2018-04-03 06:42
本文选题:干细胞 切入点:生物光子 出处:《天津工业大学》2017年硕士论文
【摘要】:干细胞是具有自我更新和高度增殖能力的一类细胞,在再生医学领域具有广阔的应用前景。大量具有高活力、无损伤的干细胞是进行干细胞生物学研究和临床应用的重要前提。因此,实时准确地获取细胞的生理状态信息具有重要的研究价值。针对现有干细胞状态信息检测手段的局限性和不足,本文基于光学检测技术的无标记、非侵入等优势,结合生物光子辐射对细胞生理状态灵敏的指示特性,设计并搭建了适用于活体干细胞的生物光子检测系统,旨在为进一步研究生物超弱光子辐射与干细胞生理状态的关联性提供可靠的实验平台。本文的主要研究内容如下:(一)根据生物光子的辐射强度低和辐射过程非稳态等特点,基于单光子计数测量原理,结合多通道时序控制技术,提出了一种适用于活体干细胞的生物光子检测系统的设计方案。(二)采用高压氙灯作为照射光源,利用光纤及耦合透镜设计系统传输光路,使用食品级不锈钢设计样品暗室,提高了系统的灵活性和避光性。采用高灵敏、低噪声的光电倍增管和快速响应的多通道光子计数器,提高了系统的集成度和灵敏度,降低了系统的噪声水平。(三)针对活体干细胞延迟发光检测对时序控制的需求,提出了一种基于ARM+FPGA架构的多通道时序控制器的设计方案,并进行了仪器的产品化设计。以ARM芯片STM32F103ZET6和FPGA芯片EP3C16Q240C8N为核心设计了多通道时序控制器的硬件电路,并基于此硬件平台进行了 FPGA逻辑电路设计,ARM软件设计,触摸屏的界面设计以及上位机软件设计,实现了 8通道并行输出、时序精度为1μs,双通道触发响应和以太网远程控制等功能。(四)搭建了以多通道时序控制器为控制核心的活体干细胞生物光子检测系统,并进行了干细胞检测实验。实验结果显示本文所研制的活体干细胞生物光子检测系统具有检测精度高(4.6×105/s·pW,at 600nm)、噪声水平低(暗计数低于20光子/秒)、测量滞后时间短(约35ms)、扩展性强、应用灵活性高等特点,满足活体细胞光诱导延迟发光的测量要求,可为进一步研究生物超弱光子辐射与干细胞生理状态信息的关联性提供稳定可靠的测量工具。
[Abstract]:Stem cells are a kind of cells with self-renewal and high proliferative ability, which have a broad application prospect in regenerative medicine.A large number of stem cells with high activity and no damage are the important prerequisite for the biological research and clinical application of stem cells.Therefore, it has important research value to obtain the physiological state information of cells in real time and accurately.In view of the limitations and shortcomings of the existing methods for the detection of stem cell state information, based on the advantages of non-labeling and non-invasion of optical detection technology, this paper combines the biological photon radiation to indicate the physiological state of the cells.A biological photon detection system suitable for living stem cells was designed and built to provide a reliable experimental platform for the further study of the relationship between biological ultra-weak photon radiation and the physiological state of stem cells.The main contents of this paper are as follows: (1) according to the characteristics of low radiation intensity and unstable radiation process of biological photons and based on the principle of single photon counting measurement, combined with multi-channel timing control technology,A design scheme of biological photon detection system for living stem cells is presented.(2) High pressure xenon lamp is used as irradiation light source, optical transmission path is designed by optical fiber and coupling lens, and sample darkroom is designed by using food grade stainless steel, which improves the flexibility and light avoidance of the system.The high sensitivity low noise photomultiplier tube and the fast response multichannel photon counter are used to improve the integration and sensitivity of the system and reduce the noise level of the system.(3) in order to meet the demand of time-sequence control for delayed luminescence detection of living stem cells, a design scheme of multi-channel timing controller based on ARM FPGA architecture is proposed, and the production design of the instrument is carried out.The hardware circuit of multi-channel timing controller is designed with ARM chip STM32F103ZET6 and FPGA chip EP3C16Q240C8N as the core. Based on this hardware platform, the design of FPGA logic circuit and arm software, interface design of touch screen and upper computer software design are carried out.The parallel output of 8 channels is realized, the timing precision is 1 渭 s, the trigger response of two channels and the remote control of Ethernet are realized.(4) the biological photon detection system of living stem cells with multi-channel timing controller as the control core is built, and the stem cell detection experiment is carried out.The experimental results show that the living stem cell biological photon detection system developed in this paper has the characteristics of high detection accuracy (4.6 脳 10 ~ 5 / s pWN / s), low noise level (dark count is less than 20 photons / sec), short measurement lag time (about 35 Ms / s), high expansibility, high flexibility in application, etc.It can provide a stable and reliable tool for further study on the relationship between biological ultra-weak photon radiation and physiological state information of stem cells.
【学位授予单位】:天津工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R329.2;TP274
【参考文献】
相关期刊论文 前10条
1 王艳菲;李阳;;干细胞与再生医学行业发展综述[J];科技创新与应用;2016年30期
2 高舒平;曲春辉;周瑞;秦川;;干细胞与转化医学研究进展浅析[J];中国实验动物学报;2016年04期
3 祝贺;郝捷;周琪;王柳;;临床级干细胞库及干细胞制剂[J];生命科学;2016年08期
4 龚惠;陈志丹;邹云增;;干细胞与心肌再生[J];上海大学学报(自然科学版);2016年03期
5 苗磊;刘培良;;干细胞治疗缺血性心脏病[J];中国组织工程研究;2016年06期
6 涂雪松;;干细胞转化技术是干细胞基础和未来临床移植研究的基石[J];中国组织工程研究;2016年01期
7 杨美娜;韩金祥;;生物光子辐射的研究进展[J];现代生物医学进展;2011年08期
8 李钻芳;陈文列;陈荣;;激光共聚焦显微术在中药与天然药诱导肿瘤细胞凋亡研究中的应用[J];环球中医药;2011年01期
9 范存刚;周景儒;张庆俊;;人脐带间充质干细胞的生物学性质研究进展[J];基础医学与临床;2010年02期
10 韩忠朝;;多能干细胞研究新进展[J];医学研究杂志;2008年10期
,本文编号:1704052
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1704052.html