基于激光扫描的车轮轮廓测量仪软硬件设计
本文选题:轮对 + 几何参数 ; 参考:《北京交通大学》2017年硕士论文
【摘要】:随着铁路事业的快速发展以及列车的不断提速,行车安全与人们生活日益密切。轮对是行车过程中决定安全和稳定的部件,轮缘高度、轮缘厚度、轮辋宽度、QR值等关键几何参数必须及时进行检测。国内外测量轮对踏面轮廓的测量方法分为动态在线测量以及静态测量。基于多个传感器的在线动态测量成本较高;传统的静态测量使用第四种检查器,测量效率低;自21世纪以来,电子设备、传感器领域的迅速发展,国内外研制了几种测量车轮几何轮廓的测量仪器,其原理以一维激光位移传感器和二维激光位移传感器为主:基于一维激光位移传感器的测量装置,用激光位移传感器获取纵向坐标,用紧密丝杆以及步进电机获取横向坐标;基于二维激光位移传感器的测量装置,采用图像处理的方法,获取轮廓,测量精度低于一维激光位移传感器的测量方法。本文以提高工作效率、兼顾经济成本的目的,结合国内外测量仪器的发展,本文设计了一种新的基于一维激光位移传感器扫描的车轮轮廓测量仪,移动扫描部分由精度为0.05mm的一维激光位移传感器和磁栅位移传感器组成。移动扫描部分每移动0.05mm,磁栅位移传感器发送信号,使激光位移传感器将测量数据通过蓝牙发送给平板电脑。扫描完成后,可以得到包括轮缘厚度、轮缘高度、轮辋宽度和QR值的几何参数。本文分析了该测量系统的随机误差和系统误差并进行了误差补偿,补偿后测量重复性误差小于0.05mm,各项测量参数的误差小于0.1mm。本文的基本工作如下:1.介绍了所使用测量系统并分析其测量原理。2.对我国现行机车轮缘踏面标准进行了说明,并计算出LM标准轮缘踏面在二位直角坐标系中的各点坐标值。3.对系统的电路、硬件进行了设计。编写了 Android系统测量软件。4.分析了测量系统中由光线通过玻璃折射后产生的系统误差以及由激光位移传感器产生随机误差,对系统误差进行了补偿。
[Abstract]:With the rapid development of railway and the increasing speed of trains, driving safety is becoming more and more close to people's life. Wheelset is the key component that determines the safety and stability in the driving process. The key geometric parameters such as the height of the wheel rim thickness rim width and QR value must be detected in time. The measuring methods of wheel tread profile at home and abroad can be divided into dynamic on-line measurement and static measurement. The cost of online dynamic measurement based on multiple sensors is high; the traditional static measurement uses the fourth type of detector, and the measurement efficiency is low; since the 21st century, the field of electronic equipment and sensor has developed rapidly. Several kinds of measuring instruments for measuring the geometric profile of wheels have been developed at home and abroad. The main principles of these instruments are one-dimensional laser displacement sensors and two-dimensional laser displacement sensors, which are based on one-dimensional laser displacement sensors. The longitudinal coordinate is obtained by laser displacement sensor, the transverse coordinate is obtained by tight wire rod and step motor, and the contour is obtained by image processing method based on the measuring device of two-dimensional laser displacement sensor. The measuring accuracy is lower than that of one-dimensional laser displacement sensor. In this paper, a new wheel profile measuring instrument based on one-dimensional laser displacement sensor scanning is designed in order to improve work efficiency and take account of economic cost and the development of measuring instruments at home and abroad. The moving scanning part consists of one dimensional laser displacement sensor with precision of 0.05mm and magnetic grating displacement sensor. For each move of 0.05mm in the mobile scanning section, the magnetic grating displacement sensor sends signals, which enable the laser displacement sensor to transmit the measurement data to the tablet computer via Bluetooth. After scanning, geometric parameters including flange thickness, rim height, rim width and QR value can be obtained. In this paper, the random error and systematic error of the measuring system are analyzed, and the error compensation is carried out. The error of repeatability is less than 0.05mm after compensation, and the error of each measurement parameter is less than 0.1mm. The basic work of this paper is as follows: 1: 1. The measuring system is introduced and its measuring principle is analyzed. The present standard of wheel flange tread of locomotive in China is explained, and the coordinate value of each point of LM standard flange tread in two right angle coordinate system is calculated. The circuit and hardware of the system are designed. The measuring software of Android system. 4. The system error caused by the refraction of light through glass and the random error produced by laser displacement sensor in the measurement system are analyzed. The system error is compensated.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212.9;U270.33
【参考文献】
相关期刊论文 前10条
1 马旭旭;许新;;一种具有蓝牙功能的IC卡预付费电能表设计[J];电气技术;2016年06期
2 孙彬;李兵;;一种量化的激光位移传感器倾角误差补偿模型[J];仪器仪表学报;2015年05期
3 林培杰;朱安南;程树英;;Android数据库SQLite性能优化[J];计算机系统应用;2014年04期
4 高云飞;李红信;虎巍;;基于最小二乘法椭圆的拟合点的选择研究[J];信息通信;2014年04期
5 马获蕾;汤海凤;;Android系统中SQLite数据库的研究[J];电脑知识与技术;2013年28期
6 周进波;张磊;张敏;袁钦鹏;;基于Android系统蓝牙开发的研究与实现[J];光学仪器;2013年01期
7 喻瑗;;基于Android平台的手机界面设计[J];知识经济;2012年21期
8 侯新琦;李佳;;基于Android蓝牙通讯的研究[J];电子世界;2012年11期
9 田垅;刘宗田;;最小二乘法分段直线拟合[J];计算机科学;2012年S1期
10 张恒喜;史争军;;基于SQLite的Android数据库编程[J];电脑编程技巧与维护;2011年21期
相关博士学位论文 前1条
1 高岩;轮对几何尺寸自动与动态在线测量方法的研究[D];北京交通大学;2014年
相关硕士学位论文 前7条
1 魏有法;基于Android的LED灯光控制器的研究与设计[D];华侨大学;2015年
2 田昊;基于Android系统的手机界面管理与设计[D];吉林大学;2014年
3 贾琦;基于三角测量法的激光位移传感器的研究[D];长春理工大学;2014年
4 张秀香;基于Android的健康管理系统客户端的设计与实现[D];大连理工大学;2012年
5 赵玉航;基于用户心理模型的Android Widget界面设计研究[D];江南大学;2012年
6 吴想想;基于Android平台软件开发方法的研究与应用[D];北京邮电大学;2011年
7 王巍;基于Android平台蓝牙设备音频应用的设计与实现[D];北京邮电大学;2009年
,本文编号:1848493
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1848493.html