风电叶片型腔后固化恒温控制理论研究与系统开发
本文选题:风电叶片 + 后固化 ; 参考:《山东理工大学》2016年硕士论文
【摘要】:后固化是风电叶片生产制造过程中的关键环节之一,该过程中叶片型腔内部的恒温控制效果将直接影响到产品的最终质量。目前后固化常用的电阻丝加热方式由于不具备吸热特性,因此温度变化具有非线性、时滞性而很难进行恒温控制,极易造成叶片损伤。因此本文提出了循环水加热的温度控制模式,采用自适应模糊PID控制技术实现型腔内部恒温控制,并针对目前温控系统存在的智能程度低、监控效果差等问题,研发了一整套风电叶片型腔后固化恒温控制系统,具体研究成果如下:首先,建立了基于水加热的总体温度控制方案。根据水加热器的特性,控制系统采用S7-200PLC控制可控硅导通角的温控方案。根据现场生产条件,组建了基于Zigbee技术的温度采集无线传感网络,开发了相应的无线传输模块和传感器硬件电路并编写了协议程序和数据采集程序;采用数字滤波技术保障了温度信号采集的准确性;基于Delphi软件设计了测试界面。测试结果表明,无线传感器网络进行数据采集具有较高的稳定性和准确性。其次,将模糊控制理论与PID控制技术相结合,开发了用于叶片型腔内恒温控制的自适应模糊PID控制算法。该算法通过采集的叶片型腔内部温度,在规定的采样周期内,计算出内部温度实测值与设定值的偏差和偏差变化率,将比较值送入模糊控制器进行运算,在线调用模糊控制规则对PID参数进行修改,计算得出PLC输出端的电流值,自适应调节水加热器输出功率,保证风电叶片后固化型腔内部温度稳定。仿真结果表明,该控制算法具有良好的动态特性。试验结果表明,该算法控制下的后固化温度误差基本稳定在±2°C,完全能满足叶片生产需要。最后,基于MCGS组态软件,开发了友好的上位机人机监控界面,包括主界面和各个子界面,实现了当前运行状态的实时显示、数据存储及报警功能,并完成了与下位机的PPI通信,保证了整个后固化过程的顺利进行。
[Abstract]:Post-curing is one of the key links in the manufacturing process of wind turbine blade. The effect of constant temperature control in the blade cavity will directly affect the final quality of the product. At present, the common heating method of resistive wire after curing is not endothermic, so the temperature change is nonlinear and time-delay, so it is difficult to control the temperature of resistor wire, so it is easy to cause blade damage. Therefore, the temperature control mode of circulating water heating is put forward in this paper. The adaptive fuzzy PID control technology is used to realize the constant temperature control in the cavity, and the current temperature control system has some problems such as low intelligence, poor monitoring effect and so on. A set of wind turbine blade cavity solidification constant temperature control system is developed. The specific research results are as follows: firstly, the overall temperature control scheme based on water heating is established. According to the characteristics of water heater, the temperature control scheme of S7-200PLC is used to control the turn-on angle of SCR. According to the field production conditions, the temperature acquisition wireless sensor network based on Zigbee technology is established, the corresponding wireless transmission module and sensor hardware circuit are developed, and the protocol program and data acquisition program are compiled. The accuracy of temperature signal acquisition is guaranteed by digital filtering technology, and the test interface is designed based on Delphi software. The test results show that data acquisition in wireless sensor networks has high stability and accuracy. Secondly, combining fuzzy control theory with PID control technology, an adaptive fuzzy PID control algorithm for blade cavity temperature control is developed. By collecting the internal temperature of the blade cavity, the deviation and the rate of deviation between the measured and set values of the internal temperature are calculated in the specified sampling period, and the comparison value is sent to the fuzzy controller for operation. The parameters of PID are modified by using fuzzy control rule on line, the current value of PLC output end is calculated, the output power of water heater is adjusted adaptively, and the internal temperature of solidified cavity after wind turbine blade is guaranteed to be stable. Simulation results show that the control algorithm has good dynamic characteristics. The experimental results show that the error of post-curing temperature under the control of this algorithm is basically stable at 卤2 掳C, which can completely meet the needs of blade production. Finally, based on the MCGS configuration software, a friendly man-machine monitoring interface is developed, including the main interface and each sub-interface. The real-time display, data storage and alarm function of the current running state are realized, and the PPI communication with the lower computer is completed. The whole post curing process is guaranteed to proceed smoothly.
【学位授予单位】:山东理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP273;TM305
【参考文献】
相关期刊论文 前10条
1 阮博;乌建中;周俊杰;;风电叶片模具电加热系统温度特性及控制算法研究[J];流体传动与控制;2014年02期
2 张磊安;黄雪梅;;MW级风机叶片单点疲劳加载系统设计、建模及试验[J];太阳能学报;2013年09期
3 张轲;;智能温控仪移动互联的设计与实现[J];科技资讯;2013年25期
4 沈周义;;基于远程控制的温度采集系统设计与实现[J];安徽电子信息职业技术学院学报;2012年06期
5 赵国亮;张永立;李洪兴;;区间Ⅱ型变论域自适应模糊逻辑控制器[J];大连理工大学学报;2012年06期
6 白建波;张小松;刘庆君;;模糊自适应PI控制在空调系统中的研究[J];化工学报;2010年S2期
7 孙学岩;;基于Zigbee无线传感器网络的温室测控系统[J];仪表技术与传感器;2010年08期
8 陈进;王旭东;沈文忠;朱卫军;张石强;;风力机叶片的形状优化设计[J];机械工程学报;2010年03期
9 王立国;王淑欣;路巍;;基于C8051F的远程多点温度控制系统设计[J];自动化技术与应用;2009年05期
10 尹航;张奇松;程志林;;基于ZigBee无线网络的温湿度监测系统[J];机电工程;2008年11期
相关硕士学位论文 前3条
1 何军庆;基于MCGS组态软件和PLC控制的微型全自动高效包衣机的研究试制[D];南昌大学;2008年
2 陈美谦;基于PLC/MCGS的电梯系统研究[D];厦门大学;2007年
3 赵静;基于MCGS下的旋流器自动控制系统[D];昆明理工大学;2006年
,本文编号:1876111
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1876111.html