高g值抗冲击加速度敏感芯片设计
发布时间:2018-05-21 06:34
本文选题:微机电系统 + 高g值 ; 参考:《沈阳工业大学》2017年硕士论文
【摘要】:微机电系统(MEMS)技术,是一种在集成电路工艺基础上发展而来的微半导体结构制造技术,由于具有传统机械制造技术难以超越的巨大优势,自问世以来就备受各方关注。凭借半导体材料的电学特性和力学特性,MEMS传感器已成为代替机械式传感器的最佳选择。基于硅材料的MEMS压阻式加速度敏感芯片,工作原理简单,制造成本低,工艺成熟,成为微加速度传感器制造商的主流产品。目前,一般的加速度敏感芯片主要采用悬臂梁和质量块结合的结构,这种结构虽然结构简单、运行稳定,但在高g值条件下,却存在着性能方面的严重缺陷,难以适应较复杂的武器应用环境。这也使得武器关键部位性能水平提升受到限制。为使MEMS压阻式加速度敏感芯片能够适应高冲击过载环境,提升微传感器的整体性能,现在对普通加速度芯片结构进行改造,设计出一种带有微梁的加速度敏感芯片结构。该结构解决了芯片灵敏度与固有频率之间的矛盾,具有较高的抗过载能力。通过结构优化,采用刻蚀凹槽的方式解决了芯片结构的交叉耦合问题。在满量程100000g条件下,经过优化分析,芯片在1mA恒流源供电时的电压输出为21.42m V,固有频率为1.025MHz,最大交叉耦合为4.24%,芯片能够承受至少650000g的加速度冲击。在以往芯片结构优化方式的基础上,提出了两种结构优化方式。通过这两种方式,确定了芯片结构的具体参数,选出最佳的芯片结构,并给出其版图与工艺过程。
[Abstract]:Micro-electromechanical system (MEMS) technology is a kind of microsemiconductor structure manufacturing technology developed on the basis of integrated circuit technology. Because of its great advantage that traditional mechanical manufacturing technology is difficult to surpass, it has attracted much attention since it came out. MEMS sensors, based on the electrical and mechanical properties of semiconductor materials, have become the best alternative to mechanical sensors. The MEMS piezoresistive accelerometer chip based on silicon material has the advantages of simple working principle, low manufacturing cost and mature process, so it has become the mainstream product of micro accelerometer manufacturer. At present, the general accelerometer chip mainly adopts the structure of cantilever beam and mass block. Although this kind of structure is simple and stable, it has serious defects in performance under the condition of high g value. It is difficult to adapt to the complicated weapon application environment. This also limits the performance level of key parts of the weapon. In order to make the MEMS piezoresistive accelerometer chip adapt to the environment of high impact overload and improve the overall performance of the microsensor, the structure of the ordinary accelerometer chip is modified and a acceleration-sensitive chip structure with microbeam is designed. The structure solves the contradiction between the sensitivity and the natural frequency of the chip, and has a high resistance to overload. The cross-coupling problem of chip structure is solved by etching grooves through structure optimization. Under the condition of full range 100000g, the output voltage of the chip is 21.42m V, the natural frequency is 1.025 MHz, the maximum cross-coupling is 4.24 g, and the chip can withstand at least 650000g acceleration shock. On the basis of the previous chip structure optimization, two kinds of structure optimization methods are proposed. Through these two methods, the specific parameters of the chip structure are determined, the optimum chip structure is selected, and the layout and process are given.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN402;TP212
【参考文献】
相关期刊论文 前10条
1 张伟;陆跃明;王光庆;;L型压电振动能量采集器的有限元分析与特性仿真[J];材料科学与工程学报;2016年06期
2 曹丽曼;;压电式加速度传感器振动测量应用研究[J];自动化与仪器仪表;2015年07期
3 陶永康;刘云峰;董景新;;一种电容式高量程微机械加速度计的设计分析[J];兵工学报;2014年11期
4 郭兴军;李朋伟;张文栋;胡杰;李刚;;基于电容式MEMS器件的静电斥力驱动研究[J];仪器仪表学报;2014年08期
5 郑志霞;冯勇建;;MEMS接触电容式高温压力传感器的温度效应[J];电子测量与仪器学报;2013年12期
6 胡星星;滕云田;谢凡;王喜珍;李彩华;王晓美;;基于MEMS传感器的速度型地震计技术研究[J];地球物理学进展;2013年01期
7 于景玲;范锦彪;;三轴高g值加速度传感器的横向效应研究[J];传感器世界;2012年06期
8 张运奎;崔峰;万镇;刘武;张卫平;;非硅MEMS电容式微加速度计的测控电路设计[J];传感器与微系统;2012年02期
9 王淑华;;MEMS传感器现状及应用[J];微纳电子技术;2011年08期
10 赵锐;石云波;唐军;刘俊;;MEMS面内大量程加速度传感器设计与分析[J];传感技术学报;2011年08期
,本文编号:1918135
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1918135.html