基于CCD图像传感器的云母槽自动检测与控制系统的设计
本文选题:云母槽 + 下刻 ; 参考:《重庆大学》2016年硕士论文
【摘要】:长期以来,直流电机换向器云母槽下刻技术比较落后,不能在下刻过程中实现精确定位。目前国内应用的下刻机需要手工修刻,劳动量较大,且下刻精度差、效率低。随着自动化程度的提高和电子技术的发展,全自动下刻技术成为云母槽下刻机发展的必要趋势。针对目前下刻机存在的问题,将微控制器技术、传感器技术、图像处理技术、交流伺服技术等结合起来,设计一种基于CCD图像传感器的云母槽自动检测与控制系统,实现下刻过程中找槽、定位的自动化,减少了劳动量,对云母槽下刻机的发展具有重大意义。整个系统工作过程是在STM32微处理器控制下完成的。首先用CCD摄像头提取换向器云母槽图片,将CCD采集的视频信号分为两路,一路送到监视器,另一路经过外围电路处理后送至单片机进行处理。通过软件算法提取到云母槽中心线的位置,再根据控制算法控制电机的运行,调节电机转向和转速,使云母槽中心线与刻刀对齐。论文主要任务分为两个部分,云母槽位置检测以及控制电机准确定位。系统设计前先进行仿真,验证系统方案可行性,然后再进行系统设计。首先选择系统控制器,然后设计图像数据获取电路主要包括视频分离电路和以及视频识别电路。此外还设计了伺服系统,用于控制换向器准确定位。为了方便观测和程序的调试,系统还设计人机接口模块和通信模块,通过触摸显示屏界面控制相关程序,PC机显示采集的图像数据。数据采集到控制器后,进行数据处理,提取云母槽中心线,并根据云母槽位置进行对伺服电机进行控制。根据视频分离电路分离出的识别信号,单片机截取图像一部分数据进行采集,对采集的数据进行滤波处理和边界检测。根据检测出的云母槽边界线确定云母槽的位置。然后控制私服电机转动,进行定位。定位设计分两个部分,粗定位与精确定位。粗定位是控制电机带动换向器从当前槽,转换到下一槽;精确定位采用PID控制算法,控制电机带动云母槽进行准确定位。最后设计相关实验检测系统性能,给出实验数据,对数据进行对比分析,并提出误差产生原因,以及解决方法,为后续工作奠定了基础,确定了进一步研究的方向。
[Abstract]:For a long time, DC motor commutator mica groove engraving technology is relatively backward, can not achieve accurate positioning in the process of undercutting. At present, the domestic application of the engraving machine needs manual cutting, the labor is large, and the undercutting accuracy is poor, and the efficiency is low. With the improvement of automation and the development of electronic technology, automatic undercutting technology has become a necessary trend in the development of mica grooves. Aiming at the problems existing in the undercutting machine at present, a mica groove automatic detection and control system based on CCD image sensor is designed by combining microcontroller technology, sensor technology, image processing technology, AC servo technology and so on. It is of great significance for the development of mica grooves to realize the automation of grooving and positioning, and to reduce the amount of labor. The whole system works under the control of STM32 microprocessor. Firstly, the image of commutator mica slot is extracted by CCD camera, and the video signal collected by CCD is divided into two channels, one way is sent to monitor, the other is processed by peripheral circuit to single chip computer. The position of the center line of the mica groove is extracted by the software algorithm, then the running of the motor is controlled according to the control algorithm, and the steering and rotating speed of the motor are adjusted, so that the centerline of the mica groove is aligned with the cutter. The main task of this paper is divided into two parts: position detection of mica groove and accurate positioning of control motor. Before the system design, simulation is carried out to verify the feasibility of the system scheme, and then the system design. Firstly, the system controller is selected, and then the image data acquisition circuit is designed, which includes video separation circuit and video recognition circuit. In addition, a servo system is designed to control the accurate positioning of the commutator. In order to facilitate observation and program debugging, the system also designs man-machine interface module and communication module, and controls the related program through touch display screen interface to display the collected image data on PC computer. After the data is collected to the controller, the data is processed, the center line of the mica groove is extracted, and the servo motor is controlled according to the position of the mica groove. According to the recognition signal separated from the video separation circuit, the single-chip microcomputer intercepts part of the image data to collect, filter the collected data and detect the boundary. The location of the mica trough is determined according to the detected boundary line of the mica trough. Then control the rotation of the private motor, positioning. Positioning design is divided into two parts, rough positioning and accurate positioning. Rough positioning is to control the motor drive commutator from the current slot to the next slot, accurate positioning using PID control algorithm, control motor driven mica groove for accurate positioning. Finally, the performance of the related experimental detection system is designed, the experimental data is given, the data is compared and analyzed, and the causes of the errors are put forward, as well as the solution, which lays the foundation for the follow-up work and determines the direction of further research.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM33;TP273
【参考文献】
相关期刊论文 前10条
1 李久芳;;基于二值化的边缘图像滤波方法[J];电子工业专用设备;2010年02期
2 高彬娜;;数字PID控制在运动控制系统中的应用[J];中国电子科学研究院学报;2006年06期
3 王阳;邱成;张占军;朱衡君;;基于索引式绝对位置编码线阵CCD的下刻机定位系统[J];仪器仪表标准化与计量;2006年05期
4 王志强;;步进电机和交流伺服电机性能综合比较[J];天津职业院校联合学报;2006年05期
5 庞极洲;贾育秦;毕友明;;基于PC的电机云母槽自动下刻机测控系统的设计[J];太原科技大学学报;2005年04期
6 陈向伟,王龙山,刘庆民;图像测量技术在微型齿轮测量中的应用[J];半导体光电;2004年06期
7 葛亚明,刘涛,王宗义;视频同步分离芯片LM1881及其应用[J];应用科技;2004年09期
8 陈春俊,伍川辉,宁静;电机云母槽自动下刻机测控系统设计[J];计算机测量与控制;2004年08期
9 沈学军,谢卫才;用模糊控制技术改进电机换向器铣槽工艺[J];微特电机;2002年06期
10 喻凌宇,朱衡君,景文军;基于面阵CCD的云母自动下刻机检测定位系统[J];仪器仪表学报;2000年06期
相关博士学位论文 前2条
1 曾俊;图像边缘检测技术及其应用研究[D];华中科技大学;2011年
2 陈鹏展;交流伺服系统控制参数自整定策略研究[D];华中科技大学;2010年
相关硕士学位论文 前3条
1 李前坤;基于FPGA的微型零件尺寸检测系统研究[D];重庆大学;2014年
2 梁宇宏;基于CCD的小尺寸测量系统的研究[D];长春理工大学;2012年
3 阚宏林;基于单片机的交流伺服电机运动控制系统研究与开发[D];西安理工大学;2005年
,本文编号:1932217
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/1932217.html