基于重力加速度的睡眠监测系统研究
本文选题:睡眠监测 + 加速度 ; 参考:《河北科技大学》2017年硕士论文
【摘要】:睡眠呼吸监测是评估睡眠障碍类型与严重程度的“金标准”,是诊断睡眠障碍疾患的基本方法。目前各级医院开展睡眠呼吸监测受到仪器、床位、人力等条件的限制,由于其操作复杂、价格昂贵、使用场景固定,容易给被测者造成心理压力和紧张,增加了他们的负担和风险,无法满足众多睡眠呼吸障碍患者检查诊治的需求,很难解决因睡眠环境改变导致监测结果不准的问题。因此,对人体睡眠过程进行实时的生理参数监测来改善睡眠质量显得特别重要。本课题基于活动、体位和鼾声信号构建新型睡眠监测系统,就远程家中监测的技术与方法进行系统研究。本项目的完成,可为广大睡眠呼吸障碍疾病患者提供方便可靠、准确高效的睡眠监测服务,并根据监测结果及时指导患者选择最适宜的防治方法。本系统的整体设计包括移动终端和上位机端两个方面,为了满足低功耗和方便携带等要求,保证硬件在结构安排和元器件的选择上都要具有高集成度和良好的抗干扰性。移动终端采用STM32F103C8T6作为主控制器,通过MPU-6050惯性传感器和MP45DT02传感器分别采集重力加速度、角速度和鼾声信号并对原始信号进行滤波。通过互补滤波算法将MPU-6050加速度和角速度融合为体位信号。通过采集的加速度信号分析得到睡眠质量,同时综合分析鼾声与体位信号为患者提出睡眠建议。进行基于C语言的姿态解算和下位机软件编程;编写基于LabVIEW的上位机界面设计和程序的编写并设计其与下位机的连接方式和通信协议,实现两者的数据传输、显示和参数的设定。通过测试证明本监测系统具有控制灵敏度高、抗干扰性强,性能稳定、功能丰富、对患者的心理负荷小等诸多优点,并且具有很好的通用性,适合人们进行实时睡眠的监测。
[Abstract]:Sleep apnea monitoring is the golden standard for evaluating the types and severity of sleep disorders and is the basic method for diagnosis of sleep disorders. At present, hospitals at all levels are restricted by equipment, beds, manpower and other conditions for monitoring sleep breathing. Because of their complex operation, high prices, fixed use scenarios, and easy to cause psychological pressure and tension to the subjects, It increases their burden and risk and can not meet the needs of many patients with sleep apnea. It is difficult to solve the problem that the monitoring results are inaccurate due to the change of sleep environment. Therefore, it is very important to monitor real-time physiological parameters to improve sleep quality. Based on activity, posture and snoring signal, a new sleep monitoring system is constructed in this paper, and the techniques and methods of remote home monitoring are studied systematically. The completion of this project can provide convenient, reliable, accurate and efficient sleep monitoring services for the majority of patients with sleep apnea disorder, and guide the patients to choose the most appropriate prevention and treatment methods according to the monitoring results. The whole design of the system includes two aspects: mobile terminal and upper computer. In order to meet the requirements of low power consumption and easy to carry, the hardware must have high integration and good anti-interference in the structure arrangement and the choice of components. The mobile terminal uses STM32F103C8T6 as the main controller. The MPU-6050 inertial sensor and MP45DT02 sensor collect the gravity acceleration, angular velocity and snoring signal respectively and filter the original signal. MPU-6050 acceleration and angular velocity are fused to position signal by complementary filtering algorithm. The quality of sleep was obtained by analyzing the acceleration signals collected, and the sleeping suggestions were put forward by synthetically analyzing the snoring and posture signals. In order to realize the data transmission, the attitude solution and software programming based on C language, the interface design and programming of upper computer based on LabVIEW, and the connection mode and communication protocol between upper computer and lower computer are designed. Display and parameter setting. It is proved by test that this monitoring system has many advantages such as high control sensitivity, strong anti-interference, stable performance, rich function, low psychological load and so on, and has good versatility, which is suitable for people to monitor sleep in real time.
【学位授予单位】:河北科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP274
【参考文献】
相关期刊论文 前10条
1 袁本凯;;无线穿戴式睡眠质量分析仪[J];机械工程师;2015年10期
2 唐林林;赵秋明;;LabVIEW的串口转WiFi数据传输实现方法[J];单片机与嵌入式系统应用;2015年09期
3 苌飞霸;尹军;;一种便携式多生理参数采集系统的设计[J];计算机测量与控制;2015年07期
4 梁陈婕;;单节锂电池线性充电系统的研究与设计[J];电子世界;2015年14期
5 文安;禹东川;宋媛;王新军;陈鸿雁;;基于蓝牙4.0的便携式睡眠监测仪的研制[J];现代生物医学进展;2015年19期
6 AO Buke;FANG Gaoli;WANG Yongcai;SONG Lei;YANG Zhiqi;;Healthcare Algorithms by Wearable Inertial Sensors: A Survey[J];中国通信;2015年04期
7 王群;程佳;刘志文;;一种新的脑电信号睡眠分期方法[J];航天医学与医学工程;2015年01期
8 MA Jing;ZHANG XiaoTong;HUANG QiWei;;Near-field magnetic induction communication device for underground wireless communication networks[J];Science China(Information Sciences);2014年12期
9 张军建;赵捷;安佰京;尹文枫;陈甜甜;李大鹏;张春游;;基于三轴加速度传感器的跌倒检测研究[J];现代生物医学进展;2014年18期
10 周亮;吴昊;林水生;;基于Zigbee和MEMS的物联网综合实验研究[J];实验技术与管理;2014年05期
相关硕士学位论文 前10条
1 唐其彪;基于脑电信号的自动睡眠分期研究[D];广东工业大学;2016年
2 王琼颖;脑电信号的非线性动力学分析及其在睡眠分期中的应用[D];哈尔滨工业大学;2015年
3 李馨;基于鼾声时频分析的OSAHS诊断[D];大连理工大学;2014年
4 宋霞萍;基于STM32的小型智能家居系统设计[D];中南林业科技大学;2014年
5 孙薇;睡眠呼吸暂停综合征的监测与治疗关键算法研究[D];南方医科大学;2014年
6 赵海强;低负荷睡眠监测系统的设计与实现[D];北京交通大学;2014年
7 张义龙;基于加速度传感器的人体运动状态监测的研究[D];南京邮电大学;2014年
8 李向新;基于多生理参数的睡眠分期研究及其应用[D];天津大学;2012年
9 张箭;便携式睡眠监测仪的设计研究[D];重庆大学;2011年
10 孟伟;基于脉搏波传导时间的便携式睡眠呼吸监测仪的研制[D];河北科技大学;2010年
,本文编号:2065281
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2065281.html