宽调速范围的交流永磁同步电机速度控制算法研究
发布时间:2018-06-30 06:27
本文选题:工业机器人 + 交流伺服驱动器 ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:工业机器人以其高集成度被广泛应用于生产制造的各个领域。电机伺服系统是工业机器人最核心的部件之一,单台工业机器人上既必须集成多个电机伺服系统,以实现各关节运动需求,因此其伴随着工业机器人的发展有着不可忽视的市场价值。在实际使用过程中,工业机器人要求伺服驱动电机具有良好的动态性能、较强的抗干扰能力以及宽调速范围能力。然而,电机伺服系统在运行的过程中往往存在由于电机齿间气隙变化、外部摩擦干扰等所引发的的扰动转矩,在电机运行于低速时对电机的平稳运行造成极大破坏,使电机速度波动极大。此外,交流永磁同步电机绕组电枢反电动势随着转速的提高而提高,当电机反电动势随转速的升高上升至直流逆变器所能提供的最大电压时,电机电枢电压达到饱和,电机转速则无法继续提升,此时如不采用特殊的控制方法将无法满足机器人对电机的宽调速范围要求。本文首先对交流永磁同步电机矢量控制进行分析,对电机控制系统进行建模,推导了矢量控制下电压方程及转矩方程,重点推导了SVPWM调制算法,针对其相邻两基本电压矢量导通时间之和超出PWM控制周期的情况通过插入空向量的形式使系统重新按照七段式调制进行,避免了多个开关动作的情况,减小了逆变器出现过流的情况。其次,通过对电机于低速区出现的扰动转矩进行分析,设计最小维扰动观测器算法对电机的扰动转矩进行观测,并利用观测转矩对控制系统进行前馈补偿,以此提高电机于低速运行时的稳态性能及抗干扰能力。设置了补偿系数控制扰动观测器补偿量,减小了扰动观测器调节过程中出现的超调。随后,对交流永磁同步电机弱磁控制原理进行分析,从电机稳态的角度分析了弱磁控制过程中稳态电流运动轨迹,以此设计了超前角弱磁控制算法,并对其电流运动轨迹及控制性能进行分析。随后从电压的角度对电机弱磁控制瞬时调整过程进行分析,针对所使用的表面式交流永磁同步电机提出了一种改进的单轴弱磁控制算法,解决了超前角弱磁控制存在的控制滞后、电流波动剧烈等问题。最后,本文设计了电机驱动硬件电路,使驱动电路更适应于高速控制的场合。设计驱动器控制整体软件结构,并针对电机控制过程中出现的故障设计了报警中断程序,避免控制不当引发的器件破坏。最终,设计了SCARA机器人伺服驱动平台,通过SCARA机器人实际使用测试验证了本文所设计的算法及硬件电路的实际使用性能。
[Abstract]:Industrial robots are widely used in various fields of manufacturing due to their high integration. Motor servo system is one of the most important components of industrial robot. It is necessary to integrate multiple motor servo systems in a single industrial robot in order to achieve the motion requirements of each joint. Therefore, with the development of industrial robots, it has a market value that can not be ignored. In the process of practical use, the industrial robot requires the servo drive motor to have good dynamic performance, strong anti-interference ability and wide speed range ability. However, the disturbance torque caused by the change of air gap between the teeth of the motor and the external friction disturbance often exists in the running process of the motor servo system, which causes great damage to the smooth operation of the motor when the motor is running at low speed. The speed of the motor fluctuates greatly. In addition, the armature backEMF of AC permanent magnet synchronous motor windings increases with the increase of rotating speed. When the motor backEMF increases to the maximum voltage provided by DC inverter, the armature voltage reaches saturation. The speed of the motor can not continue to be raised, and if the special control method is not adopted, the robot will not be able to meet the requirements of the wide speed range of the motor. In this paper, the vector control of AC permanent magnet synchronous motor (PMSM) is analyzed, the motor control system is modeled, the voltage equation and torque equation under vector control are derived, and the SVPWM modulation algorithm is derived. When the sum of the conduction time of the adjacent two basic voltage vectors exceeds the PWM control period, the system is re-modulated according to the seven-segment modulation by inserting the empty vector, thus avoiding the situation of multiple switching actions. The overcurrent of the inverter is reduced. Secondly, by analyzing the disturbance torque of the motor in the low speed region, the minimum order disturbance observer algorithm is designed to observe the disturbance torque of the motor, and the control system is fed forward by the observed torque. In this way, the steady-state performance and anti-interference ability of the motor at low speed are improved. The compensation coefficient control disturbance observer compensation is set to reduce the overshoot during the disturbance observer regulation. Then, the principle of weak magnetic field control of permanent magnet synchronous motor (PMSM) is analyzed, and the track of steady current in the process of MMSM is analyzed from the point of view of steady state of motor, and the control algorithm of weak magnetic field at leading angle is designed. The current trajectory and control performance are analyzed. Then the transient adjustment process of the weak magnetic field control of the motor is analyzed from the voltage angle, and an improved single-axis weak magnetic field control algorithm is proposed for the surface AC permanent magnet synchronous motor. The control lag and current fluctuation in the control of leading angle weak magnetic field are solved. Finally, the hardware circuit of motor drive is designed, which makes the drive circuit more suitable for high speed control. The whole software structure of driver control is designed, and the alarm interrupt program is designed to avoid device damage caused by improper control. Finally, the servo drive platform of SCARA robot is designed, and the performance of the algorithm and hardware circuit is verified by the actual test of SCARA robot.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP273;TM341
【参考文献】
相关期刊论文 前10条
1 魏萍;古云峰;;基于抗积分饱和速度调节器的TSMC-PMSM矢量控制[J];电测与仪表;2015年03期
2 石敏;冯江华;许峻峰;何亚屏;肖磊;文宇良;;提高永磁同步电机在深度弱磁控制区稳定性的控制研究[J];机车电传动;2015年01期
3 徐琼;黄守道;祁宙;郭灯塔;;利用过调制区域的IPMSM弱磁控制方法[J];电力电子技术;2013年04期
4 莫会成;王健;任雷;;现代高性能交流伺服系统综述——驱动控制篇[J];微电机;2013年01期
5 于家斌;秦晓飞;郑军;王云宽;;一种改进型超前角弱磁控制算法[J];电机与控制学报;2012年03期
6 王礼鹏;张化光;刘秀,
本文编号:2085308
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2085308.html