火星弹跳机器人研制
本文选题:火星探测 + 弹跳机器人 ; 参考:《哈尔滨工业大学》2017年硕士论文
【摘要】:随着深空探测的不断深入,世界各国逐渐将目光投向以火星为主的低重力行星。为了获取火星大气环境、土壤地质、水文特征等数据信息,本课题设计了一款适用于低重力环境的微小型星面探测机器人。基于对国内外研究现状的对照分析,通过对比不同弹跳方式和结构设计形式的优缺点,研制一种新型弹跳机器人,其采用气动弹跳和轮式行走相结合的方式,完成巡视探测和弹跳越障任务。根据环境特点和功能要求,完成了弹跳机器人的整体机械结构设计。其中,设计了一种利用双舵机来实现角度同步调节的起跳角度调节机构,主要包括曲柄摇杆机构及附件组成,根据设计要求完成了曲柄摇杆机构的优化设计,对其调节作用进行了详细分析。稳定性调节方式采用低重心结构设计的自动调节方法,对整机零部件进行模块化分割,完成低重心的结构布局方式。针对弹跳机器人落地缓冲减震的问题,提出一种采用压缩弹簧形式的弹性缓冲轮设计结构,并根据工作环境详细介绍了其结构设计特点和工作原理。建立了弹跳机器人运动过程的数学模型,并进行了弹跳性能分析,建立了单作用气缸在一定负载下竖直弹跳运动过程的数学模型,从微观角度分析了其内部气压、质量等参量的变化过程,从宏观角度建立了弹跳模型。对运动过程进行了分析,得到气缸进气腔压力、活塞杆位移、速度随时间的变化关系。为了验证理论建模的正确性,搭建了简易的气缸弹跳运动的实验台,得到气缸弹跳运动过程中设计参量的变化关系,通过对比实验结果和理论分析,验证了弹跳机器人建立模型分析的正确性。为保证弹跳机器人的各个功能的实现,设计了相应的控制系统。通过传统按键方式实现弹跳机器人的不同的动作,选用合适的元器件完成了控制板的实物焊接;其次,利用有限元软件ANSYS的Mechanical模块完成了弹跳机器人机架系统及零部件的静力学应力分析,通过ADAMS软件建立了曲柄摇杆机构的模型并进行了仿真分析;最后进行了实物样机的加工制作和安装测试,对弹跳高度、弹跳稳定性进行了实验测试,验证了气动弹跳越障方式的可行性,机械结构设计的合理性。最后对弹跳机器人在实际测试中存在的问题进行了分析,对后续的研究方向和研究重点进行了展望。
[Abstract]:With the deepening of deep space exploration, all countries of the world are gradually focusing on the low gravity planets dominated by Mars. In order to obtain the data information such as the atmospheric environment, soil geology and hydrological characteristics of Mars, a micro star surface detection robot for low gravity environment is designed. Based on the comparison of the domestic and foreign research status By comparing the advantages and disadvantages of different bounce modes and structural design forms, a new type of jumping robot is developed, which adopts the combination of pneumatic jumping and wheel walking to complete the mission of inspection and jumping over obstacle. According to the environmental characteristics and functional requirements, the overall mechanical structure of the projectile hopping robot is completed. The design of the robot is designed. A take-off angle adjusting mechanism, which uses the double steering machine to realize the angle synchronization adjustment, is mainly composed of the crank rocker mechanism and the accessories. According to the design requirements, the optimum design of the crank rocker mechanism is completed. The adjustment function is analyzed in detail. The automatic adjustment method for the design of the low gravity center is adopted for the stability adjustment mode. The structure layout of the machine parts is divided in modularization, and the structure layout of the low gravity center is completed. In view of the problem of the landing buffer of the bouncing robot, a design structure of the elastic buffer wheel with the form of compression spring is put forward, and the structure design features and working principle are introduced in detail according to the working environment. The mathematical model and the analysis of the jumping performance are carried out. The mathematical model of the vertical jump movement of the single acting cylinder under a certain load is set up. The change process of the internal pressure, the quality and other parameters is analyzed from the micro angle. The jumping model is established from the macroscopic angle. The movement process is analyzed, the pressure of the cylinder inlet cavity is obtained and the piston is obtained. In order to verify the correctness of the theoretical modeling, a simple test bench for the cylinder bounce movement is set up to obtain the change relation of the design parameters during the cylinder bounce movement. By comparing the experimental results and theoretical analysis, the correctness of the model analysis of the jumping robot is verified. According to the realization of each function of the robot, the corresponding control system is designed. The different movements of the bounce robot are realized through the traditional key mode, the suitable components are selected to complete the physical welding of the control board. Secondly, the statics of the frame system and parts of the bouncing robot are completed by using the Mechanical module of the finite element software ANSYS. In the stress analysis, the model of crank rocker mechanism is set up by ADAMS software and the simulation analysis is carried out. Finally, the machining production and installation test of the physical prototype are carried out, the jumping height and the jump stability are tested. The feasibility of the aerodynamic jump obstacle avoidance method and the rationality of the mechanical structure design are verified. Finally, the bouncing machine is made. The problems existing in the actual test are analyzed, and the future research direction and research emphasis are prospected.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 左方睿;王化明;栾云广;朱剑英;王振;黄青云;;燃气动力弹跳机器人的设计与试验研究[J];机械工程学报;2016年11期
2 陈殿生;张自强;陈科位;;仿生蝗虫机构着陆缓冲过程中的能量分配[J];机械工程学报;2015年13期
3 Dian-Sheng Chen;Jun-Mao Yin;Ke-Wei Chen;Zhen Li;;Biomechanical and dynamic mechanism of locust take-off[J];Acta Mechanica Sinica;2014年05期
4 魏敦文;葛文杰;;跳跃机器人研究现状和趋势[J];机器人;2014年04期
5 张小飞;张延恒;孙汉旭;贾庆轩;肖寒;;可跳跃式两轮机器人的设计与动力学分析[J];机器人;2014年03期
6 张军;宋光明;李臻;张颖;乔贵方;宋爱国;;可折叠轮式弹跳机器人FoldJumper的运动性能研究[J];机器人;2014年02期
7 尹军茂;陈殿生;沈奇;;仿蝗虫跳跃机构设计与分析[J];北京航空航天大学学报;2013年10期
8 欧阳自远;肖福根;;火星及其环境[J];航天器环境工程;2012年06期
9 赵明国;裘有斌;陈向;李嘉;;单足气动跳跃机器人的基于时间事件控制方法[J];机器人;2012年05期
10 吴爽;张扬眉;;国外地外天体漫游车发展状况研究[J];国际太空;2012年08期
相关会议论文 前1条
1 岳映章;葛文杰;柏龙;;行星探测机器人的移动技术对比分析[A];中国宇航学会深空探测技术专业委员会第三届学术会议论文集[C];2006年
相关博士学位论文 前3条
1 徐鹏;脚掌转动的跳跃机器人轨迹规划与落地稳定性分析[D];哈尔滨工程大学;2012年
2 王猛;仿青蛙跳跃机器人的研制[D];哈尔滨工业大学;2009年
3 刘壮志;弹跳机器人若干关键技术研究[D];南京航空航天大学;2005年
相关硕士学位论文 前1条
1 刘静静;两轮弹跳结合机器人的机械系统设计与研究[D];燕山大学;2014年
,本文编号:2096490
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2096490.html