当前位置:主页 > 科技论文 > 自动化论文 >

平均一依赖估测算法在个人信用评估中的研究

发布时间:2018-07-20 15:02
【摘要】:随着中国市场经济的高速发展,以个人的信用作为担保向银行贷款正在成为一种趋势。信用贷款数量以及贷款金额的不断增加,使得银行面临客户违约所造成的风险也在逐年增加,因此,在向客户发放信用贷款前,银行必须根据客户的真实信息客观准确地对其信用进行评估,根据信用情况发放贷款,从而降低由于客户违约而给银行带来的损失。本文分析了样本数据集和平均一依赖估测(Averaged One-Dependence Estimators,AODE)模型结构特点,针对样本数据集中的连续属性,首先提出了一种离散化方法,连续属性经过离散化处理后,能够有效地提高AODE模型的分类精度;其次根据粗糙集理论的属性约简规则,在保持信息系统分类能力不变的条件下,删除其中不相关或不重要的指标属性,从而筛选出能表示样本的最小指标集;最后将Adaboost与AODE模型相结合构建集成AODE分类器,构建个人信用评估模型。本文主要工作如下:(1)为了解决样本数据集中的连续属性离散化问题,提出一种改进的的离散粒子群优化算法。将连续属性的断点集合作为离散粒子群,通过粒子间的相互作用最小化断点子集,同时引入模拟退火算法作为局部搜索策略,提高了粒子群的多样性和寻找全局最优解的能力;利用粗糙集理论中决策属性对条件属性的依赖度衡量决策表的一致性,从而达到连续属性离散化的目的。(2)针对样本数据集中大部分指标属性存在冗余且不具备同等重要性,不利于在数据分析中做出简明的决策,对样本数据集的指标属性进行约简是信用评估的重要步骤。本文提出一种基于禁忌离散粒子群优化的属性约简算法对个人信用评估指标进行选取。由于禁忌搜索算法对初始解有较强的依赖性,而离散粒子群算法在迭代时容易陷入局部最优解,因此在指标选取过程中,采用离散粒子群算法在全局进行搜索,禁忌搜索算法在局部进行寻优,在不影响分类质量的前提下,删除冗余属性,简化知识库,构建个人信用评估指标集合。(3)AODE模型在进行分类时,组成它的每一个超父独依赖估测模型(Super Parent One-Dependence Estimator,SPODE)对分类的贡献程度是一样的,然而每一个SPODE模型的结构不同,对最终分类结果的影响也不同。本文针对平均一依赖估测算法的结构弱点提出了相应的改进。首先从构成它的每一个超父独依赖估测模型中,采用随机抽样法,选取一定数量的SPODE模型组成平均一依赖估测模型;然后采用Adaboost算法构建集成AODE分类模型;最后将集成AODE分类模型用于个人信用评估。仿真实验结果表明,集成AODE评估模型能够有效地提高个人信用评估的预测准确率。
[Abstract]:With the rapid development of China's market economy, it is becoming a trend to take personal credit as guarantee to lend to banks. The number of credit loans and the amount of loans are increasing, which makes banks face the risk of customers defaulting. Therefore, before issuing credit loans to customers, The bank must evaluate its credit objectively and accurately according to the customers' true information, and make loans according to the credit situation, so as to reduce the losses caused by the customers' default. In this paper, the structural characteristics of sample dataset and Averaged One-Dependence estimation (Aode) model are analyzed. For the continuous attributes of the sample dataset, a discretization method is proposed, and the continuous attributes are discretized. It can effectively improve the classification accuracy of AODE model. Secondly, according to the attribute reduction rules of rough set theory, the irrelevant or unimportant index attributes can be deleted under the condition that the classification ability of information system remains unchanged. Finally, the Adaboost and AODE model are combined to construct the integrated Aode classifier, and the personal credit evaluation model is constructed. The main work of this paper is as follows: (1) an improved discrete particle swarm optimization algorithm is proposed to solve the continuous attribute discretization problem in the sample data set. The breakpoint set of continuous attributes is regarded as discrete particle swarm, and the breakpoint subset is minimized by the interaction between particles. At the same time, simulated annealing algorithm is introduced as a local search strategy, which improves the diversity of particle swarm and the ability of finding global optimal solution. The consistency of decision table is measured by the dependence of decision attributes on conditional attributes in rough set theory, so as to achieve the purpose of discretization of continuous attributes. (2) aiming at the redundancy of most index attributes in the sample data set and the lack of equal importance, most of the index attributes in the sample data set are redundant and do not have the same importance. It is unfavorable to make simple decision in data analysis. Reducing index attribute of sample data set is an important step of credit evaluation. In this paper, an attribute reduction algorithm based on Tabu discrete Particle Swarm Optimization (DPSO) is proposed to select individual credit evaluation indexes. Because Tabu search algorithm has strong dependence on initial solution, and discrete particle swarm optimization algorithm is easy to fall into local optimal solution during iteration, discrete particle swarm optimization algorithm is used to search globally in the process of index selection. Tabu search algorithm searches locally, removes redundant attributes, simplifies knowledge base, and constructs individual credit evaluation index set without affecting classification quality. (3) AODE model is used for classification. Each superparent One-Dependence estimation model (SPODE) has the same contribution to the classification, but each SPODE model has different structure and different influence on the final classification results. In this paper, we propose a corresponding improvement to the structural weakness of the average-dependence estimation algorithm. First of all, a certain number of SPODE models are selected to form an average dependency estimation model from each of the super-parent sole dependence estimation models, and then the integrated AODE classification model is constructed by using Adaboost algorithm. Finally, the integrated AODE classification model is applied to personal credit assessment. The simulation results show that the integrated AODE evaluation model can effectively improve the prediction accuracy of personal credit assessment.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18

【参考文献】

相关期刊论文 前10条

1 张智磊;刘三阳;;基于回溯搜索算法的决策粗糙集属性约简[J];计算机工程与应用;2016年10期

2 戴上平;刘素军;郑素菲;;基于GA-PSO的粗糙集属性约简算法[J];计算机工程与科学;2015年02期

3 汪凌;;一种基于改进粒子群的连续属性离散化算法[J];计算机工程与应用;2013年21期

4 张雯;张化祥;;属性加权的朴素贝叶斯集成分类器[J];计算机工程与应用;2010年29期

5 周传华;王清;赵保华;韦伟;;基于交叉熵方法的选择性AODE算法[J];系统仿真学报;2009年10期

6 许磊;张凤鸣;靳小超;;基于小生境离散粒子群优化的连续属性离散化算法[J];数据采集与处理;2008年05期

7 陈果;;基于遗传算法的决策表连续属性离散化方法[J];仪器仪表学报;2007年09期

8 胡建秀;曾建潮;;微粒群算法中惯性权重的调整策略[J];计算机工程;2007年11期

9 汪杭军;张广群;方陆明;;粗糙集属性约简算法的实现与应用[J];计算机工程与设计;2007年04期

10 李旭升;郭耀煌;;基于朴素贝叶斯分类器的个人信用评估模型[J];计算机工程与应用;2006年30期

相关硕士学位论文 前10条

1 邵笑笑;个人信用评估集成模型研究[D];南京信息工程大学;2016年

2 刘艳芳;基于分类器选择的个人信用评估组合模型研究[D];哈尔滨工业大学;2015年

3 齐福慧;基于关联规则的加权AODE模型的研究[D];吉林大学;2015年

4 郑晶;基于层级属性约简的AODE分类算法的研究[D];吉林大学;2015年

5 胡来丰;基于粗糙集BP神经网络个人信用评估模型[D];电子科技大学;2015年

6 付伟;基于改进的BP神经网络的农户小额信用贷款风险评估模型研究[D];安徽大学;2014年

7 陈曦;离散粒子群算法的改进及其应用研究[D];安徽大学;2014年

8 范彦勤;基于贝叶斯分类器的个人信用评估研究[D];西安电子科技大学;2014年

9 徐鑫柱;基于支持向量机和BP神经网络的个人信用评估模型研究[D];内蒙古大学;2013年

10 王飞;集成分类器及其在个人信用评估的应用[D];中南大学;2012年



本文编号:2133911

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2133911.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户49ae4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com