基于改进遗传算法的移动机器人路径规划研究
[Abstract]:The development of mobile robot, which includes sensor technology, machinery, electronics, computer, automation control and artificial intelligence, is an important embodiment of a country's high-tech level and industrial automation. In the research of mobile robot technology, path planning technology is an important part of robot research field, and it is also the necessary foundation and fundamental guarantee for robot to complete the assigned task. In a bounded workspace with obstacles, according to the corresponding evaluation criteria (moving time, path length, energy consumption, etc.), the task is to automatically move from the given starting point to the target point according to the information of the surrounding environment. At the same time, make sure that there is no collision between robot and obstacle and between robot and robot. Up to now, most of the researches have focused on the path planning of the robot in static environment, and the multi-robot system can deal with complex, dynamic and parallel tasks effectively, which has the advantage that the single robot can't compare with each other. Therefore, it is of great significance to study the dynamic and path planning problems in multi-robot environment. At present, the existing optimization algorithms have their own defects in solving the path planning problem, so the search for better algorithms has become a research focus in this field. In view of the strong robustness, parallelism and global search ability of genetic algorithm, an improved genetic algorithm is designed and applied to single robot and multi-robot path planning. The main contents of this thesis are as follows: 1. In this paper, the path planning problem of mobile robot in the global environment is studied. In order to solve the shortcomings of the basic genetic algorithm in solving the robot path planning problems, such as slow convergence speed and easy to fall into local optimum, the genetic algorithm is improved. The artificial potential field method is introduced to initialize the population, and an adaptive selection method based on the evaluation of population diversity is proposed. The adaptive crossover and mutation probability are designed to improve the slow convergence speed and premature convergence of the basic genetic algorithm. The quality of the algorithm is improved. Several simulation experiments in grid environment show that the proposed improved genetic algorithm is feasible and effective. For the path planning problem of mobile robot in dynamic environment, the global path planning and local path planning are combined in the planning process, and an effective collision avoidance strategy is proposed according to the different collision types between the robot and the dynamic obstacle. The simulation results show that this method can effectively guide the robot to avoid obstacles in dynamic environment and obtain the optimal or sub-optimal path. 3. In this paper, the path planning of multi-robot in dynamic environment is studied. In order to solve the problem of path conflict between robots, an effective path coordination strategy is proposed. The experimental results show that the method can achieve multi-robot path planning well.
【学位授予单位】:安徽工程大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242;TP18
【参考文献】
相关期刊论文 前10条
1 田欣;刘广瑞;周文博;郭珂甫;;基于改进自适应遗传算法的机器人路径规划研究[J];机床与液压;2016年17期
2 刘晓磊;蒋林;金祖飞;郭晨;;非结构化环境中基于栅格法环境建模的移动机器人路径规划[J];机床与液压;2016年17期
3 梁嘉俊;曾碧;何元烈;;基于改进势场栅格法的清洁机器人路径规划算法研究[J];广东工业大学学报;2016年04期
4 张毅;代恩灿;罗元;;基于改进遗传算法的移动机器人路径规划[J];计算机测量与控制;2016年01期
5 屈鸿;黄利伟;柯星;;动态环境下基于改进蚁群算法的机器人路径规划研究[J];电子科技大学学报;2015年02期
6 史恩秀;陈敏敏;李俊;黄玉美;;基于蚁群算法的移动机器人全局路径规划方法研究[J];农业机械学报;2014年06期
7 张庆龙;刘国栋;;一种基于改进人工势场的移动机器人路径规划方法[J];江南大学学报(自然科学版);2014年02期
8 黎萍;朱军燕;彭芳;杨亮;;基于可视图与A*算法的路径规划[J];计算机工程;2014年03期
9 蔺婧娜;张立亚;;改进的多传感器融合的机器人局部路径规划[J];计算机测量与控制;2013年08期
10 谭民;王硕;;机器人技术研究进展[J];自动化学报;2013年07期
相关博士学位论文 前3条
1 马勇;多移动机器人路径规划研究[D];华中科技大学;2012年
2 刘传领;基于势场法和遗传算法的机器人路径规划技术研究[D];南京理工大学;2012年
3 刘淑华;复杂动态环境下多机器人的运动协调研究[D];吉林大学;2005年
相关硕士学位论文 前5条
1 赵媛;基于遗传算法的移动机器人路径规划的研究[D];河南科技大学;2014年
2 柯星;动态环境下多移动机器人路径规划研究[D];电子科技大学;2013年
3 万超;多机器人系统中的机器人路径规划研究[D];广东工业大学;2011年
4 浦定超;基于遗传算法的移动机器人路径规划的研究[D];合肥工业大学;2010年
5 李静;多移动机器人路径规划避碰和协调研究[D];上海交通大学;2007年
,本文编号:2138690
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2138690.html