多传感器数据融合及其在吸尘机器人避障中的应用
[Abstract]:Automatic detection and automatic control of complex systems can not avoid multi-sensor data acquisition and comprehensive application of information. Therefore, as an important information processing method, data fusion of heterogeneous sensors has become a hot topic. In this paper, traditional mathematical algorithms and computational intelligence algorithms are used to study the data fusion of ultrasonic and infrared sensors. On the basis of programming and simulation, a fuzzy neural network is constructed, and the application of multi-sensor data fusion in autonomous obstacle avoidance of dust cleaning robot is studied. The main work of this paper is as follows: (1) the data fusion of heterogeneous sensors is studied by using traditional mathematical algorithms. In this paper, an adaptive weighted fusion algorithm is proposed to fuse the range information of ultrasonic and infrared sensor ranging systems. The proposed algorithm is programmed and simulated with MATLAB. The simulation results show that the fusion result of the proposed adaptive weighted fusion algorithm is stable and the convergence speed of the algorithm is fast. The weights of each sensor can be allocated adaptively according to the variance of the sensor. (2) A BP neural network is constructed to study the data fusion of heterogeneous sensors. In this paper, a three-layer BP neural network is constructed for the data fusion of ultrasonic and infrared sensors. The designed BP neural network is programmed and simulated by MATLAB. In order to solve the problem of slow convergence speed and unsatisfactory fusion result of standard BP neural network in the simulation results, a training algorithm to increase the additional momentum term is proposed, and the improved results are compared and analyzed. The results show that the convergence speed of BP neural network with momentum term is faster and the fusion result is more accurate than that of ordinary network. (3) the application of data fusion technology in obstacle avoidance of dust cleaning robot is studied. A five-layer fuzzy neural network control system for a floor sweeping robot with five ultrasonic ranging sensors and an angle sensor is constructed. The distance measured by five ultrasonic sensors and the target azimuth angle measured by one angle sensor are taken as the input variables of the system and the fuzzy neural network system is inputted and the network output is obtained by the inference calculation of the system. The design of fuzzy neural network system is simulated by MATLAB. The simulation results show that when there are no obstacles in the environment, the floor sweeping robot can move along a straight line from the setting point to the target point, and when there are obstacles in the environment, The floor sweeping robot can effectively avoid obstacles to reach the target point.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 武世荣;高东旭;邓君君;;共轭梯度BP神经网络在模式分类问题中的应用[J];通讯世界;2017年03期
2 邢晓辰;蔡远文;任江涛;赵征宇;;一种考虑传感器精度的数据自适应加权融合算法[J];电讯技术;2015年10期
3 许颖丽;;“十三五”机器人来了[J];上海信息化;2015年09期
4 陈咨余;张新伟;叶凌云;;基于LMS算法的多传感器数据加权融合方法[J];计算机工程与应用;2014年20期
5 延和;吴斌;;基于改进型神经网络的双目摄像机标定[J];西南科技大学学报;2013年04期
6 张嘉昕;张宇帆;;我国服务机器人产业成长途径与前景对策研究[J];商业研究;2012年08期
7 杜鸿英;郭雷;李晖晖;刘坤;;基于不变矩与证据理论的飞机序列图像识别[J];计算机仿真;2010年02期
8 文成林;葛泉波;刘双剑;;带有信息反馈的最优异步递推航迹融合算法[J];电子与信息学报;2009年09期
9 文成林;郭超;高敬礼;;多传感器多尺度图像信息融合算法[J];电子学报;2008年05期
10 罗伟;陈峰;;机器人超声波与红外线传感器测距系统的数据融合研究[J];仪器仪表用户;2006年06期
相关会议论文 前1条
1 段朝霞;雷兵山;;一种模糊控制的节能技术在中央空调上的应用[A];2014年9月建筑科技与管理学术交流会论文集[C];2014年
相关博士学位论文 前1条
1 王鑫;基于高分辨率遥感影像的植被分类方法研究[D];北京林业大学;2015年
相关硕士学位论文 前9条
1 亓芳;基于BP神经网络分数阶控制器参数自整定算法改进[D];大连交通大学;2013年
2 田间;一种训练BP神经网络的融合算法[D];吉林大学;2011年
3 崔壮平;基于多传感器的吸尘机器人避障技术研究[D];浙江大学;2011年
4 阙隆树;数字通信信号自动调制识别中的分类器设计与实现[D];西南交通大学;2010年
5 孙娓娓;BP神经网络的算法改进及应用研究[D];重庆大学;2009年
6 徐勇;基于神经网络的自主吸尘机器人混合感知系统设计及避障规划[D];浙江大学;2007年
7 王斌明;基于多传感器信息融合的移动机器人避障研究[D];南京理工大学;2006年
8 龚华锋;智能吸尘机器人多传感器信息融合研究[D];浙江大学;2004年
9 王火亮;基于超声波传感器的智能吸尘机器人导航系统的研究[D];浙江大学;2002年
,本文编号:2142465
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2142465.html