基于水平集的SAR遥感图像分割的算法研究
[Abstract]:Synthetic Aperture Radar (SAR) is a kind of high-resolution microwave remote sensing coherent imaging radar, which plays an important role in military and national economy. One of the basic and key techniques of SAR remote sensing image segmentation is to separate the target region from the background area. However, there are a lot of multiplicative speckle noises in the SAR remote sensing image and the gray distribution of the image region is not uniform. The edge of object in SAR remote sensing image can not be accurately located, and it is difficult to segment SAR image accurately and efficiently. How to quickly and effectively realize the segmentation of SAR remote sensing image is a difficult problem to be solved. With the development of SAR remote sensing image research, the level set model is favored by researchers at home and abroad because of its good adaptability to the curve topology change and no need for noise preprocessing. On the basis of summarizing and analyzing the existing SAR remote sensing image segmentation methods based on level set, this paper aims at the multiplicative speckle noise and uneven gray distribution of SAR remote sensing image. In this paper, two level set models for fusion of regional information and edge gradient information are proposed. The main work of segmentation of SAR remote sensing image is as follows: aiming at the problem of target edge blur and target edge location incorrectly in SAR remote sensing image, A high resolution SAR remote sensing image segmentation method based on improved C-V model is proposed. This method aims at the disadvantage that C-V model can not segment uneven grayscale image, and the model only uses the region information but not the edge gradient information, which results in more false edges of the target object after segmentation. In this paper, based on the statistical characteristics of SAR remote sensing images, a G0 distribution function, which can fit both uniform and non-uniform regions, is proposed to fit the images and to solve the problem of inaccurate segmentation of non-uniform gray-scale images. At the same time, an improved edge indicator function is introduced into the C-V model. The edge indicator function can remove the multiplicative noise in the SAR remote sensing image and locate the boundary of the target. The evolution rate of the control curve and the reinitialization of the level set function are avoided. Aiming at the uneven gray distribution of SAR remote sensing images, a method of SAR remote sensing image segmentation based on improved LIF model is proposed. This method is based on the fact that the LIF model can segment inhomogeneous grayscale images well, and aims at the disadvantages of local image fitting (LIF) model, which is sensitive to noise and easy to fall into local minimum value and inaccurate edge location in the evolution process. The truncated exponential smoothing filter based on linear minimum mean square error is introduced to improve the segmentation accuracy, and the edge detection function based on gradient information and global region information is introduced, which combines fuzzy C-means (FCM) and infinite pair exponential filter. To avoid the problem of local optimum and inaccurate boundary location. Using artificial synthetic image and real road, lake and ship high resolution SAR remote sensing image segmentation experiment, compare the existing SAR remote sensing image segmentation method based on level set. It is proved that the two improved level set methods in this paper can effectively suppress multiplicative speckle noise under background clutter, accurately locate the edge contour of the target object, and improve the segmentation accuracy of SAR remote sensing images.
【学位授予单位】:江苏科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP751
【参考文献】
相关期刊论文 前10条
1 吕红力;王仁芳;;基于符号压力函数驱动的活动轮廓图像分割[J];系统仿真学报;2016年01期
2 江晓亮;李柏林;刘甲甲;王强;;基于改进活动轮廓模型的图像分割[J];计算机工程;2015年04期
3 宋发兴;杨献超;郭健;高留洋;刘东升;;一种对Gamma分布的SAR图像相干斑去噪方法[J];计算技术与自动化;2014年03期
4 王沛;周鑫;彭荣鲲;符鹏;;结合边缘和区域的活动轮廓模型SAR图像目标轮廓提取[J];中国图象图形学报;2014年07期
5 傅兴玉;尤红建;付琨;;基于改进Markov随机场的高分辨率SAR图像建筑物分割算法[J];电子学报;2012年06期
6 王斌;李洁;高新波;;一种基于边缘与区域信息的先验水平集图像分割方法[J];计算机学报;2012年05期
7 卢洁;杨学志;郎文辉;左美霞;徐勇;;区域GMM聚类的SAR图像分割[J];中国图象图形学报;2011年11期
8 倪维平;严卫东;边辉;吴俊政;芦颖;王培忠;;基于MRF模型和形态学运算的SAR图像分割[J];电光与控制;2011年01期
9 冯籍澜;曹宗杰;皮亦鸣;;一种基于G~0分布的水平集SAR图像分割方法[J];现代雷达;2010年12期
10 孔丁科;汪国昭;;基于区域相似性的活动轮廓SAR图像分割[J];计算机辅助设计与图形学学报;2010年09期
相关博士学位论文 前1条
1 冯籍澜;高分辨率SAR图像分割与分类方法研究[D];电子科技大学;2015年
相关硕士学位论文 前6条
1 黄倩;基于粒子群优化聚类的SAR图像分割方法研究[D];西安电子科技大学;2014年
2 汪柯陆;基于模糊c均值聚类的SAR图像分割算法研究[D];西安电子科技大学;2014年
3 杨琳;基于改进活动轮廓模型的SAR图像分割方法研究[D];西安电子科技大学;2013年
4 刘震加;基于全变分和特征向量集成谱聚类的SAR图像分割[D];西安电子科技大学;2013年
5 刘娜娜;基于水平集的SAR图像分割[D];西安电子科技大学;2012年
6 翟艳霞;基于统计模型的SAR图像分割[D];西安电子科技大学;2010年
,本文编号:2146147
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2146147.html