当前位置:主页 > 科技论文 > 自动化论文 >

基于卷积神经网络的海洋中尺度涡旋检测算法研究

发布时间:2018-07-29 21:02
【摘要】:中尺度涡又称为海洋“风暴”,对海洋能量和物质运输具有重大作用,具有重大的研究价值。传统的基于流场几何特征和高度异常值的涡旋检测算法不仅复杂度高,而且阂值设置受人为影响比较大,适用范围有限。卷积神经网络(Convolutional Neural Network,CNN)是深度学习的算法之一[1],已经被广泛应用在图像的识别方面。本文致力于将卷积神经网络引入海洋中尺度涡旋检测,以期提高涡旋检测的效率和精确度。本文在基于对现有涡旋检测方法研究的基础上,结合卷积神经网络在图像识别方面的有效应用,将卷积神经网络引入到涡旋检测场景中,实现基于卷积神经网络的涡旋检测算法。研究内容主要分为两部分:一方面,本文实现基于流场几何特征和基于高度异常值的涡旋检测算法。分析海洋涡旋在流场和高度异常中的特征,以特征约束方式实现涡旋检测。对比分析两种算法的准确度以及误检和漏检的原因。结果证明:这两种算法实现较容易,但对计算机的计算性能比较高,阂值比较敏感,容易造成误检或漏检,检测准确率比较低,适合数据量较少的涡旋检测。另一方面,本文实现基于CNN的涡旋检测算法。在分析CNN原理和结构研究的基础上,将卷积神经网络应用到中尺度涡旋检测中。流场再分析数据(基于海洋数值模拟计算)可以精确表征中尺度涡的速度和方向但涡心不清晰,海面高度数据可以准确反映涡心位置但容易误检测。结合两种数据特点,利用高度异常值进行全局检测,刷选疑似涡旋中心点,利用流场几何特征构建检测样本集,对疑似涡心点进行局部检测,实现基于CNN的涡旋检测。最后将三种方法检测结果进行对比和分析,结果表明:基于CNN的涡旋检测不仅准确率高,而且更加适合大数据背景下的涡旋检测。
[Abstract]:Mesoscale vortex, also called ocean "storm", plays an important role in ocean energy and material transport, and has great research value. The traditional vortex detection algorithm based on the geometric characteristics of the flow field and the height outliers not only has a high complexity but also has a large artificial influence on the setting of the threshold value and has a limited range of application. Convolutional Neural Network (Convolutional Neural) is one of the depth learning algorithms, which has been widely used in image recognition. In this paper, convolution neural network is introduced into ocean mesoscale vortex detection in order to improve the efficiency and accuracy of vortex detection. Based on the research of the existing vortex detection methods and the effective application of convolution neural network in image recognition, the convolutional neural network is introduced into the scroll detection scene. The algorithm of vortex detection based on convolution neural network is realized. The research is mainly divided into two parts: on the one hand, a vortex detection algorithm based on the geometric characteristics of the flow field and the height outliers is implemented in this paper. The characteristics of ocean vortices in current field and height anomaly are analyzed, and vortex detection is realized by means of feature constraint. The accuracy of the two algorithms and the causes of false detection and missed detection are compared and analyzed. The results show that these two algorithms are easy to implement, but they have high computing performance and sensitive threshold value, which are easy to cause false detection or miss detection, and are suitable for vortex detection with less data volume. On the other hand, this paper implements a vortex detection algorithm based on CNN. On the basis of analyzing the principle and structure of CNN, the convolution neural network is applied to mesoscale vortex detection. The reanalysis data (based on ocean numerical simulation) can accurately characterize the velocity and direction of mesoscale vortices but the vortex center is not clear. The sea surface height data can accurately reflect the location of vortex center but is easy to be misdetected. Combined with the two kinds of data characteristics, the global detection is carried out by using the height outliers, the suspected vortex center is selected by brushing, the sample set is constructed by using the geometric characteristics of the flow field, the local detection of the suspected vortex center is carried out, and the vortex detection based on CNN is realized. Finally, the results of the three methods are compared and analyzed. The results show that the vortex detection based on CNN is not only accurate, but also more suitable for vortex detection under big data background.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;P714.1

【参考文献】

相关期刊论文 前10条

1 李彦冬;郝宗波;雷航;;卷积神经网络研究综述[J];计算机应用;2016年09期

2 陈耀丹;王连明;;基于卷积神经网络的人脸识别方法[J];东北师大学报(自然科学版);2016年02期

3 张春玲;夏燕军;高郭平;;北欧海中尺度涡旋特征分析[J];海洋科学进展;2016年02期

4 邓俊锋;张晓龙;;基于自动编码器组合的深度学习优化方法[J];计算机应用;2016年03期

5 魏海涛;杜云艳;许开辉;;基于浮标轨迹的涡旋信息提取算法[J];地球信息科学学报;2015年10期

6 尹宝才;王文通;王立春;;深度学习研究综述[J];北京工业大学学报;2015年01期

7 史鹤欢;许悦雷;杨志军;李帅;李岳云;;基于深度置信网络的目标识别方法[J];计算机应用;2014年11期

8 吕启;窦勇;牛新;徐佳庆;夏飞;;基于DBN模型的遥感图像分类[J];计算机研究与发展;2014年09期

9 刘建伟;刘媛;罗雄麟;;深度学习研究进展[J];计算机应用研究;2014年07期

10 余进程;谢光汉;罗芳;;基于深度学习的道路交通标志数字识别技术探究[J];数字技术与应用;2013年12期

相关博士学位论文 前4条

1 康燕;基于web的海洋卫星数据服务研究[D];浙江大学;2012年

2 朱杰;特征提取和模式分类问题在人脸识别中的应用与研究[D];南京理工大学;2012年

3 邵宝民;海洋图像智能信息提取方法研究[D];中国海洋大学;2011年

4 何忠杰;西北太平洋副热带逆流区及其邻近海域中尺度涡研究[D];中国海洋大学;2007年

相关硕士学位论文 前10条

1 汪子杰;基于深度神经网络的视频烟雾检测研究[D];西南交通大学;2016年

2 张弛;基于卷积神经网络的鞋印图像分类算法研究[D];大连海事大学;2016年

3 赵兴;基于深度置信网集成的高光谱数据分类方法研究[D];哈尔滨工业大学;2015年

4 燕丹晨;基于卫星高度计的中尺度涡自动识别算法研究[D];国家海洋环境预报中心;2015年

5 刘欣;基于卷积神经网络的联机手写汉字识别系统[D];哈尔滨工业大学;2015年

6 赵越;中尺度涡环境下声传播分析[D];中国海洋大学;2015年

7 楚敏南;基于卷积神经网络的图像分类技术研究[D];湘潭大学;2015年

8 丰晓霞;基于深度学习的图像识别算法研究[D];太原理工大学;2015年

9 王光耀;基于机器学习的火灾检测方法研究[D];大连理工大学;2015年

10 王剑云;基于深度神经网络的表情识别算法[D];西南科技大学;2015年



本文编号:2154008

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2154008.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7a961***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com