当前位置:主页 > 科技论文 > 自动化论文 >

新型纳米材料构建的分子印迹电化学传感器的研究与应用

发布时间:2018-07-30 08:37
【摘要】:发展快速、灵敏、高选择性和检测结果可靠的传感器在诸多领域都有广泛需求,在药物分析领域也是同样。分子印迹聚合物(molecularly imprinted polymer,MIP)是一种能够特异性识别目标物质的高分子材料,具有预定选择性、特异识别性和广泛适用性的特点,因此近年来发展迅速。本论文将分子印迹技术与电化学传感技术相结合,制备了三种分子印迹电化学传感器分别用于检测雌酮硫酸钠、甲硝唑和多巴胺。主要内容分为以下3个部分:(1)基于分子印迹聚合物修饰的碳糊电极用于雌酮硫酸钠的检测本研究采用传统的本体聚合方法制备雌酮硫酸钠(estrone 3-sulfate sodium salt,ESS)分子印迹聚合物,将ESS-MIP和石墨粉混合后加入少量液体石蜡作为粘合剂,充分研磨将其混匀,随后填充到电极管中,制备了分子印迹聚合物修饰的碳糊电极(carbon paste electrode,CPE),将其作为电化学传感器用于ESS的检测。其中,对ESS-MIP制备过程中模板分子、功能单体、交联剂三者之间的比例、聚合反应溶剂和洗脱溶剂都进行了优化,同时对填入碳糊电极中聚合物与石墨粉的质量比进行了优化。通过扫描电子显微镜和傅里叶红外光谱仪对所制备的印迹聚合物材料的形貌和结构进行了表征。在最佳条件下,所构建的传感器对ESS的检测具有较好的选择性和宽的线性范围(4.0×10-12~6.0×10-9 M),检测限可达1.2×10-12 M(S/N=3)。此外,传感器被成功应用于实际孕马尿样品中ESS的检测,与高效液相色谱法进行比对发现,结果准确可信,重复性好,检测迅速,成本低廉,有望在现场实时检测中发挥作用。(2)基于分子印迹聚合物修饰的纳米多孔微线用于检测甲硝唑本工作采用金银合金线(Au-Ag alloy microrod,AMR),通过简单的脱合金法得到表面具有纳米多孔结构的金银合金线(nanoporous Au-Ag alloy microrod,NPAMR),将其作为工作电极,利用电聚合的方式在其表面修饰上分子印迹聚合物薄膜,得到分子印迹聚合物修饰的纳米多孔金银合金线(MIP/NPAMR)电极。该电极可以在没有任何额外商品化电极支撑下作为工作电极使用,本工作采用这种无支撑电极完成了甲硝唑(metronidazole,MNZ)的定量分析。对传感器制备过程中的一系列实验参数进行了优化。通过扫描电子显微镜和能谱分析对MNZ-MIP/NPAMR进行了形貌表征以及元素分析,用计时电量法对脱合金前后传感器的表面积进行了计算,结果表明具有3D结构的NPAMR具有高的比表面积和良好的电子传递能力。将[Fe(CN)6]3-/4-氧化还原对作为电流指示剂,采用循环伏安法对目标分子MNZ进行了定量分析并考察了MNZ-MIP/NPAMR的各项电化学性能。实验结果表明所构建的传感器具有超低的检测限(2.7×10-14 M)和宽的线性范围(8.0×10-14~1.0×10-6 M),不需要额外商品化电极支撑的特点也有利于降低成本。此外,传感器被成功应用于实际样品(鱼肉和片剂)中MNZ的检测,结果准确可信,重复性好,检测迅速,有望在更多生物和化学物质的痕量检测中发挥作用。(3)基于分子印迹聚合物修饰的纳米多孔微线用于检测痕量多巴胺本工作中纳米多孔金银合金微线的制备方法同(2),同样采用电聚合的方法,以多巴胺(dopamine,DA)为模板分子,在NPAMR表面形成了一层分子印迹聚合物膜,经过洗脱之后得到MIP修饰的电化学传感器(MIP/NPAMR)。对聚合过程中聚合液的pH值和模板分子与功能单体之间的比例进行了优化。通过扫描电子显微镜对NPAMR和MIP/NPAMR进行了形貌表征,用能谱分析对NPAMR和MIP/NPAMR中元素组成进行了分析,通过循环伏安法和阻抗分析法对MIP/NPAMR的各项电化学性能进行了评价。实验结果表明所构建的电化学传感器具有超低检测限(7.63×10-14 M)和宽的线性范围(2.0×10-13~2.0×10-8 M)。此外,传感器被成功应用于实际生物样品(家兔血清和大鼠脑组织)中DA的检测。
[Abstract]:Molecularly imprinted polymer (MIP) is a high molecular material capable of identifying target substances specifically, with predetermined selectivity, specificity and wide suitability. In this paper, three kinds of molecularly imprinted electrochemical sensors are prepared and used to detect sodium estrone sulfate, metronidazole and dopamine, which are divided into 3 parts: (1) carbon paste electrode based on molecularly imprinted polymer modified by molecular imprinting technology. In the study of the test of estrone sodium sulfate, the traditional bulk polymerization method was used to prepare estrone 3-sulfate sodium salt (ESS) molecularly imprinted polymer, and a small amount of liquid paraffin was mixed with ESS-MIP and graphite powder as adhesive, and it was mixed well and then filled into the electrode tube, and the molecularly imprinted polymerization was prepared. The modified carbon paste electrode (carbon paste electrode, CPE) is used as an electrochemical sensor for the detection of ESS. Among them, the proportion of the template molecules, functional monomers, crosslinker three, the polymerization reaction solvent and the elution solvent in the ESS-MIP preparation process are optimized, and the polymer and graphite powder in the carbon paste electrode are filled. The mass ratio is optimized. The morphology and structure of the imprinted polymer materials are characterized by scanning electron microscope and Fourier infrared spectrometer. Under the optimum conditions, the sensor has good selectivity and wide linear range (4 x 10-12~6.0 x 10-9 M) for the detection of ESS, and the detection limit is up to 1.2 * 10-12. M (S/N=3). In addition, the sensor has been successfully applied to the detection of ESS in real pregnant horse urine samples. Compared with high performance liquid chromatography (HPLC), it is found that the results are accurate, reliable, reproducible, rapid and inexpensive, and it is expected to play a role in real time detection. (2) nano porous microlines based on molecularly imprinted polymer are used to detect the nail. The Au-Ag alloy microrod (AMR) is used in nitrazole to obtain the gold and silver alloy wires (nanoporous Au-Ag alloy microrod, NPAMR) on the surface of the surface with a simple dealloying method, which is used as the working electrode to modify the molecularly imprinted polymer film on its surface by electropolymerization, and the molecular imprint is obtained. A trace polymer modified nano porous gold and silver alloy wire (MIP/NPAMR) electrode. The electrode can be used as a working electrode without any additional commercialized electrode support. This work uses this unsupported electrode to complete the quantitative analysis of metronidazole (metronidazole, MNZ). A series of experimental parameters in the process of sensor preparation are carried out. The morphology and elemental analysis of MNZ-MIP/NPAMR were carried out by scanning electron microscope and energy spectrum analysis. The surface area of the Dealloyed sensor was calculated by chronoelectric method. The results showed that the NPAMR with 3D structure had high specific surface area and good electron transfer ability. [Fe (CN) 6]3-/4- was redox and redox. As an current indicator, the target molecule MNZ is quantitatively analyzed by cyclic voltammetry and the electrochemical performance of MNZ-MIP/NPAMR is investigated. The experimental results show that the sensor has a ultra low detection limit (2.7 x 10-14 M) and a wide linear range (8 x 10-14~ 1 x 10-6 M) without additional commercial electrode support. The characteristics also help to reduce the cost. In addition, the sensor has been successfully applied to the detection of MNZ in real samples (fish and tablets). The results are accurate, reproducible, and rapid detection. It is expected to play a role in the trace detection of more biological and chemical substances. (3) nano porous microlines based on molecularly imprinted polymer are used to detect trace amounts. The preparation method of nano porous gold and silver alloy microwires in dopamine is the same as (2). Also, the method of electropolymerization, using dopamine (dopamine, DA) as the template molecule, has formed a layer of molecularly imprinted polymer film on the surface of NPAMR. After elution, the MIP modified electrochemical sensor (MIP/NPAMR) is obtained. The pH of the polymerization solution in the polymerization process. The ratio of the value and the template molecule to the functional monomer was optimized. The morphology of NPAMR and MIP/NPAMR was characterized by scanning electron microscope. The composition of the elements in NPAMR and MIP/NPAMR was analyzed by energy spectrum analysis. The electrochemical properties of MIP/NPAMR were evaluated by cyclic voltammetry and impedance analysis. The results show that the proposed electrochemical sensor has a ultra low detection limit (7.63 x 10-14 M) and a wide linear range (2 x 10-13~2.0 * 10-8 M). In addition, the sensor has been successfully applied to the detection of DA in the actual biological samples (rabbit serum and rat brain tissue).
【学位授予单位】:石河子大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212

【参考文献】

相关期刊论文 前10条

1 张路;赵燕萍;张闪闪;宋旺弟;周维维;李迎春;;双模板分子印迹聚合物在奶粉检验中的应用研究[J];化学试剂;2015年06期

2 刘江;刘媛;李迎春;唐辉;吴冰冰;;两步蒸馏沉淀聚合法制备红霉素表面分子印迹聚合物及其性能研究[J];高分子学报;2014年12期

3 张进;熊和琴;姚桃花;罗荣琴;李世杰;;分子印迹电化学传感器检测环境中特丁津研究[J];环境科学与技术;2014年05期

4 丁昊;杨青;徐帆;闫若冰;;电导式阵列传感器的优化[J];信息通信;2014年04期

5 姚军;赵倩;高晓黎;;LC-MS法检测新疆孕马尿中的3种主要结合雌激素[J];华西药学杂志;2014年02期

6 萨仁托雅;张峰;卢亚楠;李伟;;分子印迹技术制备与应用进展[J];应用化工;2014年01期

7 魏小平;常川;李建平;;分子印迹电化学传感器选择性识别及电催化检测多巴胺[J];化学学报;2013年06期

8 孙兆辉;连惠婷;孙向英;刘斌;;石墨烯掺杂对分子印迹电化学传感器的增敏作用[J];华侨大学学报(自然科学版);2012年04期

9 姚军;高晓黎;高茜;曾立军;王岩;;新疆孕马尿中主要结合雌激素定性定量方法研究[J];药物分析杂志;2011年08期

10 王颖;李楠;;分子印迹技术及其应用[J];化工进展;2010年12期

相关博士学位论文 前9条

1 白慧萍;几种分子印迹电化学传感器的研制及应用[D];云南大学;2015年

2 崔敏;基于纳米材料的电化学传感器及其应用研究[D];北京理工大学;2014年

3 吴敏;纳米材料修饰电化学传感器及其在有害物质检测中的应用研究[D];华东师范大学;2014年

4 黎雪莲;纳米复合材料的制备、性质及其在生物分析中的应用[D];西南大学;2013年

5 刘瑛;基于电聚合技术的新型分子印迹传感器的研究和应用[D];江南大学;2013年

6 刘召娜;新型纳米结构材料在电化学传感器中的研究与应用[D];山东大学;2012年

7 杨素玲;碳纳米管复合薄膜修饰电极的构筑及其在药物分析中的应用[D];郑州大学;2012年

8 邱华军;纳米多孔金属材料在生物催化和生物传感中的应用研究[D];山东大学;2011年

9 张淑平;基于碳纳米管的电流型生物传感器及在农药检测中的应用研究[D];上海大学;2008年

相关硕士学位论文 前10条

1 龙芳;多纳米复合材料增敏印迹电化学传感器的研制及应用[D];吉首大学;2016年

2 王思远;基于金属纳米颗粒修饰碳纳米材料制备纳米复合物构建电化学传感器对生化小分子多组分同时检测的研究[D];西南大学;2016年

3 朱丽丽;基于分子印迹聚合物的电化学传感器在生物小分子检测中的应用[D];南京师范大学;2016年

4 刘媛;几种纳米复合材料的制备及其在电化学传感器中的应用[D];石河子大学;2015年

5 郑有虎;红霉素分子印迹聚合物制备及免疫检测应用研究[D];大连海洋大学;2015年

6 洪旭城;新型分子印迹聚合物的制备及其性能研究[D];广东工业大学;2015年

7 徐丽娟;基于多壁碳纳米管修饰的分子印迹电化学传感器的研制与应用[D];西北师范大学;2015年

8 刘海;接枝型分子印迹膜的制备及其农药电位型传感器的构建[D];中北大学;2015年

9 赵乾;分子印迹电化学传感器的制备及其应用[D];大连理工大学;2014年

10 吴莹;分子印迹电化学传感器的研究[D];吉林大学;2014年



本文编号:2154435

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2154435.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9d0e9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com