当前位置:主页 > 科技论文 > 自动化论文 >

基于穿戴式的人体跌倒检测系统研究与设计

发布时间:2018-08-02 09:58
【摘要】:人体姿态在很多领域发挥着重要的作用,比如一些病人的康复训练、人机交互游戏、电影中一些特效等。如何快速而准确的检测与识别出人体某种姿态已成为当前一个热门的研究课题。目前人体姿态检测方案大体可以分为两类:一是通过检测人体周围环境信息如人体视频图像、声音、电磁波以及红外线等信息的变化作为判定依据进行相应姿态的判定;二是通过人体佩戴的一些装置如三轴加速度传感器、压力传感器和惯性传感器等采集人体姿态相关的一些数据来推断与识别人体姿态。结合当前我国空巢老人多,加上跌倒事故的频繁发生,并且跌倒后有时得不到及时救助的实际情况。本系统从携带方便、低功耗、实时性好三个方面考虑,设计了仅需一个三轴加速度传感器的人体姿态检测系统,该装置适合佩戴于人体腰部位置。此外,系统设计自动求助功能和主动求助功能。可以在老人发生跌倒后得到及时救助。检测系统由信号采集模块、处理模块以及通讯模块组成。传感器模块负责采集加速度数据,并进行预处理;处理模块提取合加速度SMVA、合加速度微分绝对平均值M4DS、加速度信号强度SM4、人体倾斜角BT4等相关特征值;通讯模块负责对人体进行定位和求助短信发送。论文中根据检测到的数据分别采用当前常用的阈值法、本文改进后的阈值法(多级跌倒检测算法)和支持向量机的奇异值分解算法进行了跌倒检测实验,对三种算法的跌倒检测判断的准确率的比较,改进后的多级姿态检测算法判断跌倒检测的准确率比一般阈值法的要高,但与支持向量机的检测算法的准确率差距不大。但是多级跌倒检测算法实时性较支持向量机算法好。综合实时性和准确率,决定选用多级跌倒检测算法作为最终方案。在此基础上完成了跌倒检测系统的软硬件设计。通过对系统各个功能的测试,能够很好的实现人体跌倒检测和自动发出求救短信功能。检测效果的准确率和实时性均达到预期目的。
[Abstract]:Human posture plays an important role in many fields, such as rehabilitation training for patients, interactive games, special effects in movies and so on. How to detect and recognize human posture quickly and accurately has become a hot research topic. At present, human attitude detection schemes can be divided into two categories: one is the determination of posture by detecting the changes of human body environment information such as human body video image, sound, electromagnetic wave, infrared ray and so on; Secondly, some devices such as triaxial acceleration sensor, pressure sensor and inertial sensor are used to infer and recognize human posture. Combined with the fact that there are many empty nest elderly people in our country, and the frequent fall accidents occur, and sometimes can not get timely rescue after falling. Considering the convenience of carrying, low power consumption and good real-time performance, the system designed a three-axis acceleration sensor for human body attitude detection system, which is suitable for the waist position of the human body. In addition, the system designed automatic help function and active help function. You can get help in time after an old man falls down. The detection system consists of signal acquisition module, processing module and communication module. The sensor module is responsible for collecting acceleration data and preprocessing, processing module extracts the acceleration SMVA, the differential absolute average of acceleration M4DS, the acceleration signal intensity SM4, the human body tilt angle BT4 and other related characteristic values. The communication module is responsible for locating the human body and sending short messages for help. According to the detected data, the current commonly used threshold method is used in this paper. The improved threshold method (multilevel fall detection algorithm) and the singular value decomposition algorithm of support vector machine (SVM) are used in the fall detection experiment. Compared with the accuracy of the three algorithms, the improved multi-level attitude detection algorithm has higher accuracy than the general threshold method, but the accuracy of the improved multi-level attitude detection algorithm is not far from that of the support vector machine algorithm. But multilevel fall detection algorithm is better than support vector machine algorithm in real time. Considering the real-time and accuracy, it is decided to choose the multi-level fall detection algorithm as the final scheme. On this basis, the software and hardware design of the fall detection system is completed. By testing all the functions of the system, we can realize the function of human fall detection and send out the short message automatically. The accuracy and real-time of the detection effect reach the expected goal.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TP212.9

【参考文献】

相关期刊论文 前10条

1 刘莉;郑冬云;刘晓军;;基于MPU6050的老年人跌倒监测系统设计[J];中国医疗器械杂志;2015年05期

2 韩盈党;李哲;;MEMS加速度传感器的数据采集和预处理[J];仪表技术与传感器;2015年02期

3 付棉;胡才友;吕泽平;阳初玉;史晓红;杨泽;;老年人跌倒的流行现状及危险因素分析[J];中国老年保健医学;2014年03期

4 姜典卓;高玲;林芹兰;;老年人跌倒危险因素研究[J];求医问药(下半月);2013年10期

5 李正周;陈联涛;刘勇;高媛;于帆;;人体跌倒的鲁棒检测方法[J];数据采集与处理;2013年05期

6 李战明;王晓萌;;基于新型MEMS传感器的老年人跌倒检测系统设计[J];工业仪表与自动化装置;2013年04期

7 徐宁;王伟;杨玉婷;孟祥贵;;便携式人体姿态实时检测系统设计[J];仪表技术;2013年06期

8 朱勇;张研;宋佳;邱天爽;;基于倾角的跌倒检测方法与系统研究[J];生物医学工程学杂志;2013年01期

9 王荣;章韵;陈建新;;基于三轴加速度传感器的人体跌倒检测系统设计与实现[J];计算机应用;2012年05期

10 薛源;高向阳;;基于多传感器信息融合的跌倒监测系统设计[J];武汉理工大学学报(信息与管理工程版);2011年05期

相关博士学位论文 前1条

1 佟丽娜;基于力学量信息获取系统的人体摔倒过程识别方法研究[D];中国科学技术大学;2011年

相关硕士学位论文 前10条

1 王晴;便携式老年人健康监护系统的设计与实现[D];昆明理工大学;2016年

2 张金桥;基于人体姿态的跌倒检测算法研究与应用[D];大连海事大学;2016年

3 秦f ;基于传感器的跌倒检测系统的研究与实现[D];江南大学;2015年

4 薛玉玺;基于加速度传感器的人体姿态识别系统研究[D];河北科技大学;2014年

5 吴志强;基于智能手机的人体跌倒检测技术的研究与应用[D];南方医科大学;2014年

6 何杰;视频监控中的人体异常行为识别方法研究[D];重庆大学;2014年

7 毛立昱;基于手机的跌倒监测系统设计与实现[D];电子科技大学;2014年

8 李强;跌倒检测关键技术的研究与应用[D];北京工业大学;2013年

9 周敏;基于移动终端的跌倒检测方法研究[D];湘潭大学;2013年

10 杨星;基于S3C2440平台的Linux系统移植[D];北京交通大学;2011年



本文编号:2159068

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2159068.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c34c9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com