当前位置:主页 > 科技论文 > 自动化论文 >

基于多传感器信息处理纸币检测若干关键技术研究

发布时间:2018-08-04 14:26
【摘要】:随着人民币发行量、流通量不断地增长,人民币国际化的深入推进,我国人民币流通领域点验钞机具、清分机、ATM机等金融设备急需提高其自动化、信息化水平,以确保人民币的流通效率和管理水平,有效打击纸币造假犯罪活动,保障人民币职能作用和金融体系的安全。本文分析了我国金融设备行业现有的人民币纸币检测技术存在的不足与缺陷:光磁特征多采用定性分析及低水平定量分析鉴别、多传感器特征鉴别方法相对孤立及信息融合能力较弱、智能算法复杂度偏高及实时性较差等,并针对传感器特征鉴别方法孤立及信息融合能力较弱等问题,从多传感器纸币检测机电验证平台搭建与基于多传感器信息纸币图像处理算法研究等方面展开了基于多传感器信息处理的纸币检测若干关键技术研究。多传感器纸币检测机电验证平台搭建工作包含机电平台搭建与检测控制系统的软硬件设计。通过对机电验证平台的搭建,实现了机电平台传送机构在检测控制系统控制下传送纸币依次经过机电平台各传感器模组的运动控制过程,实现了纸币光学、磁性及图像等纸币防伪特征原始数据的动态采集与上传至PC保存,为实现纸币防伪特征定量分析鉴别的离线仿真算法研究提供数据支撑。检测控制系统包含机电控制与光磁检测系统和基于FPGA与CIS纸币图像采集系统,2个子系统间充分利用其控制接口与通信接口实现了系统间协同工作与多传感器鉴别信息的共享,为实现多传感器信息融合算法实物仿真研究提供平台条件。在基于多传感器信息纸币图像处理算法研究工作中,首先利用加权最小二乘法对倾斜的纸币图像进行倾斜检测并通过错切变换算法校正纸币图像,确保了纸币图像冠字号码等特征区域的正确分割提取。通过与随机Hough变换和普通最小二乘法倾斜检测实验对比,仿真结果表明本文倾斜检测算法具有计算量小、稳定性好等特点,可快速实现纸币图像倾斜校正。在纸币图像倾斜校正基础上,基于机电验证平台可实现多传感器鉴别信息共享条件,利用磁性特征鉴别信息识别纸币面值面向信息,实现纸币图像冠字号码快速分割提取与识别算法的研究。基于多传感器信息纸币图像特征区域分割提取算法有利于移植到FPGA纸币图像采集系统中,以减少典型嵌入式纸币图像处理系统中DSP处理单元处理任务。本文着重从多传感器纸币检测机电验证平台搭建及基于多传感器信息纸币图像处理算法前期仿真研究等方面展开基于多传感器信息处理纸币检测技术的研究,为多传感器信息融合算法研究提供原始数据与实物仿真验证平台,为简化纸币图像处理算法与流程,合理分配嵌入式纸币图像处理系统各处理单元任务以提高各单元协同工作能力及纸币图像处理效率进行了有益的前期研究尝试。
[Abstract]:With the increasing of RMB circulation and circulation, and the deepening of RMB internationalization, the level of automation and information technology is urgently needed to be improved in China's financial equipment, such as banknote checking machines, sorting machines, ATM machines, and so on, in the area of RMB circulation. In order to ensure the efficiency and management level of RMB circulation, effectively crack down on the criminal activities of banknote counterfeiting, guarantee the function of RMB and the security of financial system. This paper analyzes the shortcomings and defects of the existing RMB banknotes detection technology in China's financial equipment industry: the optical and magnetic characteristics are mostly identified by qualitative analysis and low level quantitative analysis. The multi-sensor feature identification method is relatively isolated and the ability of information fusion is weak, the complexity of intelligent algorithm is on the high side and the real time is poor, and so on, and aiming at the problems of the isolation of sensor feature identification method and the weak ability of information fusion, etc. Several key techniques of paper currency detection based on multi-sensor information processing are studied from the aspects of multi-sensor paper currency detection electromechanical verification platform and image processing algorithm based on multi-sensor information. The multi-sensor paper currency detection and electromechanical verification platform includes the hardware and software design of the electromechanical platform and the detection and control system. Through the construction of the electromechanical verification platform, the paper currency transfer mechanism under the control of the detection and control system realizes the motion control process of each sensor module of the electromechanical platform in turn, and realizes the paper currency optics. The original data of magnetic and image anti-counterfeiting features are dynamically collected and uploaded to PC to provide data support for the off-line simulation research of quantitative analysis and identification of banknote anti-counterfeiting features. The detection and control system includes electromechanical control and optomagnetic detection system and paper money image acquisition system based on FPGA and CIS. The two subsystems make full use of their control interface and communication interface to realize the sharing of cooperative work and multi-sensor identification information between the two subsystems. It provides a platform for the simulation of multi-sensor information fusion algorithm. In the research work of paper currency image processing algorithm based on multi-sensor information, firstly, the weighted least square method is used to detect the tilt of the skewed banknote image and the miscut transform algorithm is used to correct the banknote image. It ensures the correct segmentation and extraction of the feature areas of banknote image, such as crowning and number. Compared with the experiments of random Hough transform and ordinary least square method, the simulation results show that the proposed algorithm has the advantages of small computation and good stability, and can quickly realize the skew correction of paper currency images. Based on the skew correction of banknote image and the electromechanical verification platform, the multi-sensor discriminant information sharing condition can be realized, and the face value information of banknotes can be identified by using magnetic feature discriminant information. Research on fast segmentation and recognition algorithm of banknote image. The feature region segmentation and extraction algorithm based on multi-sensor information paper currency image is advantageous to transplant to FPGA paper currency image acquisition system, in order to reduce the processing task of DSP processing unit in typical embedded paper currency image processing system. This paper focuses on the multi-sensor paper currency detection based on the establishment of electromechanical verification platform and based on multi-sensor information paper currency image processing algorithm simulation research based on multi-sensor information processing paper currency detection technology. In order to simplify the algorithm and flow of paper currency image processing, the paper provides a platform of raw data and physical simulation verification for the research of multi-sensor information fusion algorithm. In order to improve the cooperative ability of each unit and the efficiency of paper money image processing, a beneficial preliminary research attempt was made by allocating the tasks of each processing unit of embedded paper currency image processing system.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212.9

【参考文献】

相关期刊论文 前10条

1 李和;周斌;;基于磁信号检测的人民币面值识别技术研究[J];科技展望;2016年31期

2 刘艳萍;杜秋晨;张进东;;基于BP神经网络的纸币面向识别方法[J];计算机应用与软件;2015年11期

3 索双富;许汝真;孟国营;杨杰;;模式识别技术在人民币检伪中的应用研究[J];机械设计与制造;2015年11期

4 苑玮琦;李之奇;;人民币纸币全息磁性开窗安全线检测方法研究[J];电子设计工程;2015年21期

5 鲁亚青;师占群;胡亚欣;刘芳;;基于多传感器的伪钞鉴别系统及其信号特征分析[J];河北工业大学学报;2015年02期

6 刘梦涛;金晓峰;刘道余;梁添才;;接触式图像传感器在金融电子装备中的应用研究[J];科技传播;2015年03期

7 邓安良;任明武;;基于HSV空间的纸币面额识别算法研究[J];现代电子技术;2015年02期

8 陈正伟;朱建华;周律;刘浏;;人民币纸币冠字号码字符识别方法研究[J];浙江科技学院学报;2014年06期

9 苑玮琦;姜楠;;人民币纸币红外、紫外特征检测方法[J];计算机系统应用;2014年09期

10 刘习文;薛家祥;;纸币图像Gabor特征提取与识别[J];光学与光电技术;2014年03期

相关会议论文 前1条

1 王荣秋;;自适应零值钞票厚度检测装置及其方法[A];《IT时代周刊》论文专版(第317期)[C];2015年

相关硕士学位论文 前7条

1 李欣;基于TMR传感器的人民币纸币鉴别与面值识别技术研究[D];杭州电子科技大学;2015年

2 董静;纸币鉴伪系统设计与磁图像特征识别方法研究[D];北方工业大学;2014年

3 蒋天瑜;基于多光谱图像的纸币防伪鉴定技术研究[D];华中科技大学;2013年

4 蒋海波;扫描图像的倾斜校正、分割与压缩[D];山东大学;2012年

5 钱斐斐;纸币残损状态识别技术研究[D];上海交通大学;2011年

6 许万征;纸币多光谱图像分析方法[D];哈尔滨工业大学;2010年

7 卢龙;基于磁信号与红外图像的纸币鉴别技术研究[D];哈尔滨工业大学;2009年



本文编号:2164167

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2164167.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e1626***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com