基于Pareto人工鱼群算法的多目标斗链式拆卸线平衡特性研究
[Abstract]:The rapid development of science and technology has accelerated the pace of product upgrading, resulting in a large number of used mechanical and electrical products. The realization of disassembly and recycling of used mechanical and electrical products not only meets the requirements of green manufacturing, but also alleviates the increasingly tight demand for resources, and brings enormous economic benefits to disassembly enterprises. Disassembly line is the inevitable choice to realize large-scale and automatic disassembly operation. The research of disassembly line balance has important theoretical significance and extensive practical application value. In the traditional production line, it is difficult to achieve the balance of the production line with the fixed workstation beat time, but the organization mode of the bucket chain production has a high balance. The theoretical analysis and numerical simulation show that the hopper chain system is still balanced when the retrieval speed is considered. Furthermore, the mathematical model of disassembly line balance problem based on bucket chain production mode is established. The model includes several optimization objectives, which not only considers the balance characteristics of production line, but also needs to disassemble parts with high demand and harm as soon as possible. In order to meet the requirements of advanced manufacturing processes such as economy, efficiency, safety and environmental protection, the times of disassembly direction change are reduced as much as possible. In order to solve the problem of multi-objective disassembly line balance, a multi-objective artificial fish swarm algorithm based on Pareto solution set is designed in order to overcome the problems of multiple conflicting targets in the traditional method. In order to improve the optimization ability of artificial fish, the random cross operation was used to guide the artificial fish to forage in the direction of optimal disassembly. The non-inferior solutions in the process of foraging, clustering and rear-end behavior are continuously selected by crowding distance. The diversity of the results of each behavior is realized, and the non-inferior solutions in the external files are added to the iterative population of the algorithm, thus speeding up the convergence of the algorithm. The proposed algorithm is proved to be convergent and distributed by an example, and various balancing schemes are obtained by solving the examples of different scale tasks. Compared with the results of the existing algorithms, the validity and superiority of the proposed algorithm are verified. The established model and the designed algorithm are applied to the actual disassembly line, and 16 balancing schemes are obtained in solving the engine bucket chain disassembly line balance problem with the same retrieval speed. In solving the balance problem of printer bucket disassembly line with different retrieval speed, 20 kinds of balancing schemes were obtained, which realized the balance of production operation, increased the effective working time, and provided a wide range of decision-making space for decision makers. Therefore, the model and the algorithm designed in this paper can solve the problem of disassembly line balance, effectively improve the line balance problem, and have a strong applicability and broad application prospects.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP278;TP18
【相似文献】
相关期刊论文 前10条
1 曾三友;蔡振华;张青;康立山;;一种评估近似Pareto前沿多样性的方法[J];软件学报;2008年06期
2 周瑾;谢唯;;综合使用序列分析和Pareto图对工序集合的截取(英文)[J];上海第二工业大学学报;2008年03期
3 ;Design of high performance multilayer microwave absorbers using fast Pareto genetic algorithm[J];Science in China(Series E:Technological Sciences);2009年09期
4 蔡瑞;齐佳音;;基于改进的Pareto/NBD模型预测博客用户在线行为[J];统计与信息论坛;2013年06期
5 张岗亭;姜晓兵;王书振;;网络最大流Pareto扩充研究[J];电子科技大学学报;2006年01期
6 董红斌;黄厚宽;何军;侯薇;穆成坡;;一种混合策略的Pareto演化规划[J];模式识别与人工智能;2006年06期
7 周秀玲;孙承意;;Pareto-MEC算法及其收敛性分析[J];计算机工程;2007年10期
8 宋冠英;李海楠;邹玉静;;一种基于Pareto解集的无约束条件的多目标粒子群算法[J];机械工程师;2008年05期
9 陶媛;吴耿锋;胡珉;;基于Pareto的多目标进化免疫算法[J];计算机应用研究;2009年05期
10 ;Diversity of Pareto front: A multiobjective genetic algorithm based on dominating information[J];Journal of Control Theory and Applications;2010年02期
相关会议论文 前10条
1 ;A Pareto-Based Differential Evolution Algorithm for Multi-objective Optimization Problems[A];Proceedings of 2010 Chinese Control and Decision Conference[C];2010年
2 周秀玲;孙承意;;Pareto-MEC算法的收敛性分析[A];2005年中国智能自动化会议论文集[C];2005年
3 ;Multiobjective Optimization with Competitive Coevolutionary Genetic Algorithms[A];第二十九届中国控制会议论文集[C];2010年
4 ;Study on New Coordination Mechanisms of Generalized Supply Chains with Loss-averse Agents[A];2009中国控制与决策会议论文集(3)[C];2009年
5 樊铁成;马孜;;Pareto前沿在航线优化中的应用[A];第16届中国过程控制学术年会暨第4届全国故障诊断与安全性学术会议论文集[C];2005年
6 徐安察;汤银才;;Pareto分布下屏蔽数据的贝叶斯统计分析及其应用[A];技术融合创新·可靠服务企业·安全产品制胜——2013年全国机械行业可靠性技术学术交流会暨第四届可靠性工程分会第五次全体委员大会论文集[C];2013年
7 陈银美;石连栓;;一种改进的求解均匀分布Pareto解集的多目标遗传算法[A];中国运筹学会第十届学术交流会论文集[C];2010年
8 韩松;魏权龄;;非参数DEA模型最优解的(弱)Pareto性质研究[A];中国运筹学会第七届学术交流会论文集(上卷)[C];2004年
9 樊铁成;马孜;罗勋杰;;Pareto遗传算法在集装箱配载优化中的应用[A];第二十四届中国控制会议论文集(下册)[C];2005年
10 吕萍;李晴;宋吟秋;;考虑运营成本的公路Pareto有效BOT合同[A];中国系统工程学会第十八届学术年会论文集——A02管理科学[C];2014年
,本文编号:2168925
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2168925.html