基于卡尔曼滤波提高陀螺传感器测量精度的研究
[Abstract]:The aeronautical photoelectric stabilization platform is widely used in the military field, public security, environmental monitoring and other civil environments because of the automatic tracking and recognition of the target by the image detection device. Among them, gyroscope sensor is the core sensitive sensor of aeronautical optoelectronic stabilization platform. It is installed on the motion carrier. The change of the speed of the sensitive carrier can isolate the disturbance and make the aero-photoelectric stabilization platform as stable as possible. Furthermore, the view axis installed in the platform interior load has a stable direction. Because of the influence of the external environment and its own structure error, the gyroscope sensor in the aero-optoelectronic stabilization platform will introduce random drift and measurement noise when the speed of the sensitive platform changes. As a result, the output torque of DC drive motor can not drive the frame motion of the platform accurately, which will lead to the instability of the axis of view in the ideal position of the target. Therefore, in order to improve the accuracy of optical axis stabilization of aero-optoelectronic stabilization platform, the signal output from gyroscope must be filtered and processed effectively. Kalman filter is used to describe the dynamic system according to the equation of state. The linear minimum variance is used as the estimation criterion and the method of prediction and correction is used to estimate the optimal state of the system. Kalman filter is widely used because of its advantages of good real-time, small storage space and easy to be realized. Considering the actual engineering requirements, in this paper, the strong tracking Kalman filter algorithm is used to filter the noise interference for the signal output from the gyroscope sensor in the two-axis and four-frame aeronautical photovoltaic stabilization platform by using the strong tracking Kalman filter algorithm. The main contents of this paper are as follows: (1) according to the working principle of two-axis four-frame aeronautical stabilization platform, Based on the comprehensive analysis of all kinds of interference factors in the system, the adverse effects of the measurement noise of the gyroscope sensor on the stability accuracy of the optic axis are analyzed. (2) in order to effectively filter the output signal of the gyroscope sensor, The mathematical model of gyroscope signal is established. The time series method is the modeling method used in this paper. The system output data is used to predict the internal characteristics and external factors of the system and to predict the future status of the system. Considering the complexity of the algorithm and the computational complexity in practical application, AR (1) model is used as the mathematical model of gyroscope sensor. The model can provide reference for parameter setting in Kalman filter. (3) based on the mathematical model of gyroscope sensor, the state equation and measurement equation of Kalman filter are constructed, and the measurement noise of gyro signal is analyzed. Kalman filter technique is used to suppress it. At the same time, the strong tracking algorithm is introduced, the state prediction variance matrix in Kalman filter is adjusted constantly, and the output error sequence is forced to remain irrelevant, and a strong tracking Kalman filter is constructed. In order to improve the robustness of the system. (4) the strong tracking Kalman filter proposed in this paper is compared with the second order Butterworth filter which is commonly used in engineering to verify the filtering effect and robustness of the strong tracking Kalman filter. The experimental results show that compared with the second order Butterworth filter, the output signal of the strong tracking Kalman filter is obviously improved in amplitude and variance. The dynamic performance of the control system is optimized and the real-time performance of the signal is guaranteed. At the same time, the strong tracking Kalman filter proposed in this paper has better robust stability.
【学位授予单位】:中国科学院长春光学精密机械与物理研究所
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TN713;TP212
【相似文献】
相关期刊论文 前10条
1 纪宗南;利用单片机的软资源提高仪器的测量精度[J];测控技术;1990年01期
2 P.Swerling;W.L.Peterman;陶建义;;目标雷达截面起伏对雷达测量精度的影响[J];现代雷达;1991年04期
3 廖重文;;激光扫描测径仪测量精度的分析[J];应用激光;1982年02期
4 鲍道铭;;利用系统校准提高压力测量精度[J];强度与环境;1987年05期
5 夏泉义;计算机辅助平衡技术中的测量精度分析[J];北京理工大学学报;1989年01期
6 任公瑾;李崇德;;数字示波器测量精度和测试方法[J];电子测量与仪器学报;1989年04期
7 陈雪东;;利用差动技术改善测量精度的研究[J];电子技术与软件工程;2013年16期
8 陶永祥;;激光尺检验规[J];激光与光电子学进展;1986年10期
9 庄大奎;黄永楷;杨天立;;高反射率测量中的测量精度与误差分析[J];激光技术;1989年04期
10 刘学如 ,张明 ,刘永宽 ,肖化明;用SEM直接测定介质薄膜的厚度[J];微电子学;1982年04期
相关会议论文 前10条
1 孙延鹏;刘公望;张芝贤;徐宏宇;;一种提高在宽温条件下压力测量精度的方法[A];第六届全国信息获取与处理学术会议论文集(2)[C];2008年
2 董春来;董思学;郭淑艳;;RTK测量精度算法模型及其实验研究[A];第二届中国卫星导航学术年会电子文集[C];2011年
3 刘晓东;;GPS RTK的测量精度及其在地质勘探测量中的应用[A];华东地区第十次测绘学术交流大会论文集[C];2007年
4 张孝军;林云发;;GPS RTK技术的测量精度探讨[A];湖北省测绘学会2004年度科学技术交流会论文集[C];2005年
5 张孝军;林云发;;GPS RTK技术的测量精度探讨[A];第三届湖北科技论坛优秀论文集[C];2005年
6 张孝军;林云发;;GPS RTK技术的测量精度探讨[A];测绘荆楚——湖北省测绘学会2005年“索佳杯”学术论文集[C];2005年
7 赵春城;;尝试采用国际海道特等测量精度标准(S-44)对疏浚工程的验收[A];中国航海学会航标专业委员会测绘学组学术研讨会学术交流论文集[C];2006年
8 张孝军;林云发;;浅析GPS RTK技术的测量精度[A];中国测绘学会第八次全国会员代表大会暨2005年综合性学术年会论文集[C];2005年
9 万晓霞;黄新国;刘振;史智勇;;镭射纸表面结构对颜色测量精度的影响[A];第十三届全国包装工程学术会议论文集[C];2010年
10 王兴涛;石磐;;SST-LL主要有效载荷测量精度需求分析[A];《大地测量与地球动力学进展》论文集[C];2004年
相关重要报纸文章 前3条
1 记者 陈超;日“大地”号卫星测量精度不足[N];科技日报;2008年
2 朱待松;GPS测量征地节省资金700万元[N];中国测绘报;2011年
3 高博;国产导航芯片或替代进口[N];中国航天报;2011年
相关博士学位论文 前1条
1 常松涛;红外经纬仪结构设计及提高其辐射测量精度的关键技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2015年
相关硕士学位论文 前10条
1 林蔚;高带宽HDD Preamp IC测试技术研究[D];复旦大学;2013年
2 王钰彤;MST与CAT相结合的比较研究与应用[D];江西师范大学;2015年
3 马天生;载荷对板式制动检验台测量精度的影响试验研究[D];吉林大学;2016年
4 朱枫;基于卡尔曼滤波提高陀螺传感器测量精度的研究[D];中国科学院长春光学精密机械与物理研究所;2016年
5 李佩秦;珩磨液性能对在线气动测量精度影响的实验研究[D];兰州理工大学;2014年
6 马桃桃;GPS-RTK小区域测量精度研究[D];西安科技大学;2013年
7 普晋亚;PSD激光三角测距系统设计[D];华中科技大学;2008年
8 王琼;RTK测量精度分析与研究[D];吉林大学;2008年
9 薄悦;提高质心测量精度的关键技术研究[D];机械科学研究院;2004年
10 谌华;CRInSAR大气校正模型研究及其初步应用[D];中国地震局地质研究所;2006年
,本文编号:2172310
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2172310.html