仿真足球机器人防守动作及跑位研究
[Abstract]:The Robocup2D simulation platform is a dynamic multi-agent antagonistic system. On the simulation platform, the action choice of the player agent in each cycle will directly determine the team's ability to attack and defend, and how the players cooperate with each other in the course of the game is more accurate. Fast arrival at the target point for attack or defense is a prerequisite for all effective strategies. On the basis of triangulation formation design, this paper focuses on agent action selection in defense task and player movement in formation transformation. The research contents are as follows: firstly, Monte Carlo tree search algorithm is introduced into 2D simulation. The state of player agent on the court is defined as the game tree node, the action selection of both players is regarded as the state transfer between the nodes, and the Monte Carlo tree model is established for the defense task of the team. Using polar coordinates to segment the area of the course, combining the Q-learning and the confidence upper tree algorithm in Monte Carlo tree search for team training, the training results of the action evaluation value is used to optimize the match code. A better action selection strategy is obtained. Secondly, a time-minimized scalable role assignment method is proposed to coordinate the movement of allocation agents. The different implementation methods of this method are analyzed and compared at a deeper level. And it is applied to the realization of team attack and defense transformation in 2D platform and the partial coordination movement in the process of player attack and defense. The problem of movement of player group is modeled to make the movement of players more efficient and sensitive. Unnecessary mistakes were reduced. Finally, by defining the state of attack and defense transformation as the root node in the Monte Carlo tree and combining with the role assignment method of time minimization, the joint experiment of agent group defense is carried out, and the experimental data is analyzed to optimize the code parameters. The validity of the method is proved by the competition data.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前4条
1 石轲;陈小平;;行动驱动的马尔可夫决策过程及在RoboCup中的应用[J];小型微型计算机系统;2011年03期
2 曹慧芳;刘知青;;基于WinCE应用程序的围棋游戏开发[J];软件;2011年01期
3 夏晓梅;周干民;;基于定向Ford-Fulkerson算法的NoC路径分配[J];合肥工业大学学报(自然科学版);2006年03期
4 詹明清;;瓶颈分配问题的圈小元素算法[J];武汉工学院学报;1994年02期
相关博士学位论文 前3条
1 柏爱俊;基于马尔科夫理论的不确定性规划和感知问题研究[D];中国科学技术大学;2014年
2 邵伟;蒙特卡洛方法及在一些统计模型中的应用[D];山东大学;2012年
3 范长杰;基于马尔可夫决策理论的规划问题的研究[D];中国科学技术大学;2008年
相关硕士学位论文 前8条
1 徐晓星;2D仿真足球机器人系统的阵型与传球配合[D];南京邮电大学;2016年
2 凌兆龙;基于Delaunay三角网的RoboCup仿真2D阵型分析[D];安徽工业大学;2016年
3 于永波;基于蒙特卡洛树搜索的计算机围棋博弈研究[D];大连海事大学;2015年
4 曹一鸣;基于蒙特卡罗树搜索的计算机扑克程序[D];北京邮电大学;2014年
5 赵发君;RoboCup仿真2D系统的研究[D];安徽大学;2013年
6 秦童;RoboCup中多智能体协作的研究[D];南京邮电大学;2012年
7 石轲;基于马尔可夫决策过程理论的Agent决策问题研究[D];中国科学技术大学;2010年
8 胡凡;基于RoboCup仿真平台的机器人足球协作策略的研究[D];武汉科技大学;2009年
,本文编号:2183159
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2183159.html