智能预测控制在磨机自动控制系统中的应用
[Abstract]:Grinding machine is one of the important equipment in cement grinding system. The stability of mill load directly affects the grinding efficiency of grinding machine and the quality of cement finished product. Therefore, it is of great significance to study the mill load. With the improvement of automation level, the requirements of model research and optimization control of mill automatic control system will be higher and higher. Because the mill is a complex industrial controlled object with nonlinear, pure lag and strong coupling, it is difficult to obtain good control effect by using conventional control algorithm. In this paper, the automatic control system of a cement mill is taken as the research object. On the basis of understanding the present research situation of cement grinding system at home and abroad, the intelligent predictive control is proposed to optimize the mill load control. According to the combined grinding process, the speed of the separator is selected as the input of the system, the current of the output hoist is taken as the output of the system, and the predictive control strategy based on neural network is adopted to optimize the load of the mill. On this basis, the upper computer software of the mill automatic control system is developed. The main work of this paper is as follows: (1) Identification of mill load model and design of predictive controller using three-layer forward BP neural network. First, the input and output data are collected to identify the order of the input and output delay of the system model, and then the neural network model is used as the prediction model, and the N-R rolling optimization method is used to calculate the future control sequence of the system. Feedback correction is used to overcome the model prediction error caused by disturbance. Finally, the effectiveness of the algorithm in the cement mill automatic control system is verified by Matlab simulation. (2) the predictive control software is developed by using the mixed programming of MFC and Matlab in VC. The algorithm program written in m file is compiled into VC's DLL dynamic link library file by Matlab Compiler method, and the function of algorithm module is realized by calling DLL file in VC, and the function of data reading and writing is realized by OPC technology. In order to display the dynamic effect, the TeeChart5 control is imported into the MFC program to display the changing trend of the grinding hoist current in real time in order to realize the design of the user interface. (3) for the practical application of the project, the effectiveness of the optimized control software is verified. The optimal control effect of the software is verified by observing the real-time curve. The results show that the optimal control software developed in this paper can adjust the current of the mill hoist to the set value and make the mill load stable.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ172.632;TP273
【参考文献】
相关期刊论文 前10条
1 刘石红;;基于T-S模糊模型的非线性系统广义预测控制[J];工业仪表与自动化装置;2016年06期
2 林小峰;孔伟凯;;基于ELM的水泥立磨生料细度ADP控制[J];系统仿真学报;2016年11期
3 郑鹏;;基于LM-BP神经网络的软件质量综合评价[J];山东理工大学学报(自然科学版);2016年03期
4 代高富;符金伟;周胜;张冬凯;;基于模型预测控制的MMC-HVDC系统控制策略研究[J];电力系统保护与控制;2016年10期
5 周烈;张建华;;VPM预粉磨辊磨及粉磨工艺探析[J];水泥技术;2016年02期
6 李明河;周磊;王健;;基于LM算法的溶解氧神经网络预测控制[J];农业机械学报;2016年06期
7 郭光文;张驰;李培杰;安肇勇;;压铸生产信息OPC客户端的开发研究[J];特种铸造及有色合金;2016年02期
8 陈黔;;水泥厂磨机系统工艺参数的优化和平衡问题的研究[J];四川水泥;2016年01期
9 谢小云;;Ф4.2m×12.5m水泥粉磨系统的改造[J];水泥技术;2015年05期
10 代桃桃;张强;申涛;;水泥磨机负荷的LPV预测控制[J];济南大学学报(自然科学版);2016年02期
相关硕士学位论文 前8条
1 任俊超;球磨机系统先进控制算法研究及应用[D];中国科学技术大学;2015年
2 王杰;基于软约束的水泥磨预测控制算法研究[D];燕山大学;2013年
3 任万杰;水泥粉磨系统的建模与控制方法研究[D];济南大学;2013年
4 胡红泽;新型干法水泥生产过程优化控制策略研究[D];浙江大学;2012年
5 梁耀瑞;基于遗传算法的自适应PID控制器在控制系统中的应用[D];华北电力大学;2012年
6 王荣光;基于DMC的磨机负荷优化控制[D];济南大学;2011年
7 刘志鹏;水泥预粉磨优化控制系统的设计与研究[D];浙江大学;2012年
8 贺永刚;JD水泥公司5S现场管理应用研究[D];西北大学;2007年
,本文编号:2198496
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2198496.html