基于卷积神经网络的运动目标跟踪研究
[Abstract]:With the advent of the information age, moving target tracking has become a hot spot in the field of computer vision and has wide application value in many fields. Although many moving target tracking algorithms have been proposed, there are still many difficulties in the actual tracking process, such as illumination change, occlusion, motion blur, scale change, self-change and so on. Therefore, the development of target tracking technology is still challenging. The emergence of depth learning theory and method provides a new opportunity for the research of target tracking, and is also the main theoretical framework for the research of moving target tracking algorithm in this paper. The main contents of this paper are as follows: (1) the basic knowledge of moving target tracking technology is studied. Starting with the representation method of target tracking, the basic knowledge of target tracking classification and the traditional feature extraction method are understood. (2) the basic theory of convolution neural network is studied. Firstly, based on the analysis of artificial neural network structure, the structure characteristics and training process of convolutional neural network are introduced. Secondly, the process of feature extraction based on convolution neural network is introduced. Compared with the traditional feature extraction and BP feature extraction, the effect is better than these two methods. (3) an improved algorithm of moving target tracking based on convolution neural network is proposed. The moving target tracking algorithm based on convolution neural network is a tracking algorithm which combines depth feature extraction particle filter and classifier. Firstly, the principal component analysis (Principal Component Analysis,PCA) technique is used to extract the PCA feature vector from the local image dataset, and then the convolutional neural network is initialized to extract the depth feature by using the PCA eigenvector. Finally, classifier and particle filter motion estimation are used to realize target recognition and tracking. The experimental results show that the proposed improved tracking algorithm can overcome the external interference and the change of the target itself in the tracking process, and is superior to the current mainstream tracking algorithms in terms of accuracy and success rate.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TP183
【参考文献】
相关期刊论文 前10条
1 段红燕;邵豪;张淑珍;张晓宇;王小宏;;一种基于Canny算子的图像边缘检测改进算法[J];上海交通大学学报;2016年12期
2 任楠;杜军平;朱素果;李玲慧;Jang Myung Lee;;基于混合特征的运动目标跟踪方法[J];北京邮电大学学报;2016年06期
3 毕笃彦;库涛;查宇飞;张立朝;杨源;;基于颜色属性直方图的尺度目标跟踪算法研究[J];电子与信息学报;2016年05期
4 厉丹;田隽;肖理庆;孙金萍;程德强;;基于主动轮廓模型联合Camshift算法的目标跟踪方法[J];电视技术;2015年19期
5 李寰宇;毕笃彦;杨源;查宇飞;覃兵;张立朝;;基于深度特征表达与学习的视觉跟踪算法研究[J];电子与信息学报;2015年09期
6 郭丽丽;丁世飞;;深度学习研究进展[J];计算机科学;2015年05期
7 张焕龙;胡士强;杨国胜;;基于外观模型学习的视频目标跟踪方法综述[J];计算机研究与发展;2015年01期
8 宋佳声;胡国清;焦亮;;改进的几何活动轮廓演化及其在目标跟踪中的应用[J];华南理工大学学报(自然科学版);2015年01期
9 黄凯奇;陈晓棠;康运锋;谭铁牛;;智能视频监控技术综述[J];计算机学报;2015年06期
10 郑胤;陈权崎;章毓晋;;深度学习及其在目标和行为识别中的新进展[J];中国图象图形学报;2014年02期
相关博士学位论文 前3条
1 胡锦龙;扩展目标特征提取与跟踪技术研究[D];中国科学院研究生院(光电技术研究所);2015年
2 刘晴;基于区域特征的目标跟踪算法研究[D];北京理工大学;2014年
3 陈晓飞;基于骨架的目标表示和识别技术研究[D];国防科学技术大学;2004年
相关硕士学位论文 前2条
1 赵耀博;目标跟踪中的目标表示方法研究[D];西北农林科技大学;2014年
2 许可;卷积神经网络在图像识别上的应用的研究[D];浙江大学;2012年
,本文编号:2208882
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2208882.html