基于多源信息融合的非接触式疲劳驾驶检测系统研究
[Abstract]:With the progress of society and the gradual improvement of people's living standard, the number of cars is increasing year by year. The complicated road traffic environment leads to frequent traffic accidents. Fatigue driving has become the main cause of traffic accidents. The current fatigue driving detection device usually uses the contact physiological signal to detect the driver's fatigue state, which not only causes the driver to feel uncomfortable, but also interferes with the driver's normal driving. The fatigue driving detection method based on contactless image sensor to detect driver's face information overcomes the shortcomings of low accuracy and poor reliability of contact detection, but it is easily disturbed by external environment. Therefore, the study of multi-source information fusion non-contact fatigue driving detection device can effectively reduce traffic accidents. In this paper, a multi-source information fusion system based on radar detection physiological signal and steering wheel angle detection is designed. The system mainly includes Doppler radar physiological signal detection system, steering wheel angle detection system and driving video signal recording system. Firstly, according to the principle of Doppler radar detecting physiological signal, the hardware system is designed, and a series of signal processing, such as preprocessing, amplifying, active bandpass filtering, A / D conversion and so on, are carried out. The radar digital signal related to physiological information is obtained from it. The steering wheel angle acquisition system combines Hall angle sensor and rotary encoder to collect angle signal of steering wheel. Secondly, aiming at the characteristics of radar digital signal, two different digital filtering methods, FIR and IIR, are used to separate the physiological signal. The advantages and disadvantages of the separation algorithm are compared, and the breathing signal and the heartbeat signal are separated by the zero-phase IIR filtering algorithm. Finally, the student T-test method is used to analyze the characteristic values of fatigue driving video signal and synchronized breathing and heartbeat signal, and the signal quantity associated with fatigue degree is obtained. And designed the extreme learning machine feedforward neural network algorithm to identify the fatigue degree. The characteristic values of physiological signal and steering wheel signal were extracted under different fatigue degree, and the identification was trained by extreme learning machine algorithm, and the fatigue sample data were identified and tested. The student T test method was used to calculate the fatigue data of the driver. The conclusion showed that the breathing depth of the driver was strongly dependent on the fatigue driving. The experimental data waveforms show that the steering wheel angle changes and the breathing amplitude and frequency of the driver decrease with the deepening of sleep. Driver fatigue samples are selected for identification test. The results show that the identification rate of fatigue state reaches 81%. The multi-source information fusion-based non-contact fatigue driving detection system has the advantages of predictability and high recognition accuracy.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP274
【参考文献】
相关期刊论文 前10条
1 秦颖;张晶;蔡靖;戴强;;基于交直流分离的反射式血氧饱和度测量系统的设计[J];传感技术学报;2015年06期
2 郭勇;刘巍;黄泽华;李秋燕;;重点行业用电监测分析系统开发模型研究[J];电子技术与软件工程;2015年06期
3 李薛媛;;疲劳驾驶预防措施的研究[J];交通世界(运输.车辆);2012年06期
4 李永增;冯尚源;林居强;陈冠楠;黄祖芳;谢树森;陈荣;;生物组织拉曼光谱数据的统计分析[J];激光生物学报;2011年01期
5 欧韬;周长春;;基于神经网络的民航安全态势评估模型及仿真[J];中国安全生产科学技术;2011年02期
6 成波;冯睿嘉;张伟;李家文;张希波;;基于多源信息融合的驾驶人疲劳状态监测及预警方法研究[J];公路交通科技;2009年S1期
7 冯冬青;杜云龙;;心电信号处理数字滤波方法研究[J];微计算机信息;2008年07期
8 王靖;李永全;;数字椭圆滤波器的Matlab设计与实现[J];现代电子技术;2007年06期
9 梅玉芳;;仪表放大器及其应用问题研究[J];中国科技信息;2006年16期
10 路国华,杨国胜,王健琪,荆西京;雷达式生命探测仪中人体数量识别技术的研究[J];北京生物医学工程;2005年01期
相关博士学位论文 前2条
1 牛清宁;基于信息融合的疲劳驾驶检测方法研究[D];吉林大学;2014年
2 胡巍;基于多普勒雷达的非接触式生命体征检测技术研究[D];中国科学技术大学;2014年
相关硕士学位论文 前10条
1 许苗苗;基于物联网的倾角式明渠自动测流系统的研究[D];太原理工大学;2016年
2 李瑞;一种新型心电信号检测读取电路的研究与设计[D];重庆大学;2014年
3 吕娜;极限学习机及其在无线频谱预测中的应用研究[D];兰州大学;2014年
4 李甫;基于典型交通事故分析的汽车运行风险研究[D];吉林大学;2013年
5 石磊;基于Android智能移动终端的汽车疲劳驾驶预警系统的研究与实现[D];南京邮电大学;2013年
6 张华;生物雷达非接触检测中呼吸和心跳信号分离算法研究[D];第四军医大学;2012年
7 王琦;电动汽车电源管理系统设计与实现[D];大连理工大学;2011年
8 黄松;基于数值优化的注塑成型工艺分析[D];华南理工大学;2011年
9 张成立;穿墙生命探测雷达信号处理硬件设计[D];西安电子科技大学;2011年
10 谷也;基于方向盘转角信号的驾驶员疲劳监测装置研制[D];哈尔滨工业大学;2009年
,本文编号:2210884
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2210884.html