基于多类分类的主动学习改进算法
[Abstract]:For supervised learning model, sufficient number of labeled samples is a prerequisite for obtaining high accuracy classifiers. However, in reality, unlabeled samples account for a large proportion of the total samples, while manual labeling is expensive, so it is necessary to control the quantity and quality of training samples. It is a key problem to solve the problem of active learning that how to efficiently select the non-class sample with high classification contribution and add to the existing training set in order to improve the accuracy and robustness of classifier step by step. In addition, most of the active learning research is confined to the closed sample set, how to apply active learning to the open production environment and achieve high classification accuracy is also worth studying. Aiming at the problem of inter-class equilibrium and outliers in BvSB sample selection algorithm, a Center reBvSB sample selection algorithm is proposed by combining uncertainty and representativeness. Firstly, K-Means clustering is used to select representative training set A, then reBvSB sample selection algorithm is used to select representative edge equilibrium sample set B. finally, A and B are integrated and the training set is updated. Experimental results show that the proposed algorithm can improve the accuracy and robustness of the classifier. The Center reBvSB sample selection algorithm is integrated into the active learning algorithm, and an improved BvSB active learning algorithm is proposed. The recognition ability of the classifier can be further improved by retraining the classifier by using the error sample pool generated by on-line recognition combined with the original sample pool. The Mnist dataset is used to simulate the real online recognition scene. The experimental results show that the improved active learning algorithm has better robustness and higher recognition accuracy.
【学位授予单位】:河北大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP181
【参考文献】
相关期刊论文 前10条
1 高成;陈秀新;于重重;刘宇;;基于主动学习的图半监督分类算法[J];计算机工程与设计;2015年07期
2 徐美香;孙福明;李豪杰;;主动学习的多标签图像在线分类[J];中国图象图形学报;2015年02期
3 金良;曹永锋;苏彩霞;任俊英;;基于HS样本选择和BvSB反馈的多类图像分类[J];贵州师范大学学报(自然科学版);2014年04期
4 余凯;贾磊;陈雨强;徐伟;;深度学习的昨天、今天和明天[J];计算机研究与发展;2013年09期
5 曹永锋;陈荣;孙洪;;基于BvSBHC的主动学习多类分类算法[J];计算机科学;2013年08期
6 李海峰;李纯果;;深度学习结构和算法比较分析[J];河北大学学报(自然科学版);2012年05期
7 刘康;钱旭;王自强;;主动学习算法综述[J];计算机工程与应用;2012年34期
8 陈荣;曹永锋;孙洪;;基于主动学习和半监督学习的多类图像分类[J];自动化学报;2011年08期
9 韩光;赵春霞;胡雪蕾;;一种新的SVM主动学习算法及其在障碍物检测中的应用[J];计算机研究与发展;2009年11期
10 胡正平;高文涛;万春艳;;基于样本不确定性和代表性相结合的可控主动学习算法研究[J];燕山大学学报;2009年04期
相关硕士学位论文 前5条
1 徐艳;基于主动学习的图像标注方法研究[D];辽宁工业大学;2014年
2 白龙飞;基于支持向量机的主动学习方法研究[D];山西大学;2012年
3 刘峰涛;基于样例池类标改变率的主动学习算法终止准则研究[D];河北大学;2011年
4 王珍钰;基于不确定性的主动学习算法研究[D];河北大学;2011年
5 赵秋焕;两种主动学习方法[D];河北大学;2010年
,本文编号:2213023
本文链接:https://www.wllwen.com/kejilunwen/zidonghuakongzhilunwen/2213023.html